Rtwo/kernel/motorola/sm8550/drivers/mmc/host/sdhci-msm.c

5625 lines
159 KiB
C
Raw Normal View History

2025-09-30 20:22:48 -04:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
*
* Copyright (c) 2013-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/mmc/mmc.h>
#include <linux/pm_runtime.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/interconnect.h>
#include <linux/iopoll.h>
#include <linux/qcom_scm.h>
#include <linux/regulator/consumer.h>
#include <linux/interconnect.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_qos.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/reset.h>
#include <linux/clk/qcom.h>
#include <linux/nvmem-consumer.h>
#include <linux/ipc_logging.h>
#include <linux/pinctrl/qcom-pinctrl.h>
#include <trace/hooks/mmc.h>
#include "../core/mmc_ops.h"
#include "../core/host.h"
#include "sdhci-pltfm.h"
#include "cqhci.h"
#include "../core/core.h"
#include <linux/qtee_shmbridge.h>
#include <linux/crypto-qti-common.h>
#include <linux/suspend.h>
#if IS_ENABLED(CONFIG_MMC_SDHCI_MSM_SCALING)
#include "sdhci-msm-scaling.h"
#endif
#include "sdhci-msm.h"
#define CORE_MCI_VERSION 0x50
#define CORE_VERSION_MAJOR_SHIFT 28
#define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT)
#define CORE_VERSION_MINOR_MASK 0xff
#define CORE_VERSION_TARGET_MASK 0x000000FF
#define SDHCI_MSM_VER_420 0x49
#define CORE_MCI_GENERICS 0x70
#define SWITCHABLE_SIGNALING_VOLTAGE BIT(29)
#define HC_MODE_EN 0x1
#define CORE_POWER 0x0
#define CORE_SW_RST BIT(7)
#define FF_CLK_SW_RST_DIS BIT(13)
#define CORE_PWRCTL_BUS_OFF BIT(0)
#define CORE_PWRCTL_BUS_ON BIT(1)
#define CORE_PWRCTL_IO_LOW BIT(2)
#define CORE_PWRCTL_IO_HIGH BIT(3)
#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
#define CORE_PWRCTL_BUS_FAIL BIT(1)
#define CORE_PWRCTL_IO_SUCCESS BIT(2)
#define CORE_PWRCTL_IO_FAIL BIT(3)
#define REQ_BUS_OFF BIT(0)
#define REQ_BUS_ON BIT(1)
#define REQ_IO_LOW BIT(2)
#define REQ_IO_HIGH BIT(3)
#define INT_MASK 0xf
#define MAX_PHASES 16
#define CORE_DLL_LOCK BIT(7)
#define CORE_DDR_DLL_LOCK BIT(11)
#define CORE_DLL_EN BIT(16)
#define CORE_CDR_EN BIT(17)
#define CORE_CK_OUT_EN BIT(18)
#define CORE_CDR_EXT_EN BIT(19)
#define CORE_DLL_PDN BIT(29)
#define CORE_DLL_RST BIT(30)
#define CORE_CMD_DAT_TRACK_SEL BIT(0)
#define CORE_DDR_CAL_EN BIT(0)
#define CORE_FLL_CYCLE_CNT BIT(18)
#define CORE_LOW_FREQ_MODE BIT(19)
#define CORE_DLL_CLOCK_DISABLE BIT(21)
#define DLL_USR_CTL_POR_VAL 0x10800
#define ENABLE_DLL_LOCK_STATUS BIT(26)
#define FINE_TUNE_MODE_EN BIT(27)
#define BIAS_OK_SIGNAL BIT(29)
#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
#define CORE_CLK_PWRSAVE BIT(1)
#define CORE_VNDR_SPEC_ADMA_ERR_SIZE_EN BIT(7)
#define CORE_HC_MCLK_SEL_DFLT (2 << 8)
#define CORE_HC_MCLK_SEL_HS400 (3 << 8)
#define CORE_HC_MCLK_SEL_MASK (3 << 8)
#define CORE_IO_PAD_PWR_SWITCH_EN BIT(15)
#define CORE_IO_PAD_PWR_SWITCH BIT(16)
#define CORE_HC_SELECT_IN_EN BIT(18)
#define CORE_HC_SELECT_IN_HS400 (6 << 19)
#define CORE_HC_SELECT_IN_MASK (7 << 19)
#define CORE_HC_SELECT_IN_SDR50 (4 << 19)
#define CORE_8_BIT_SUPPORT BIT(18)
#define CORE_3_0V_SUPPORT BIT(25)
#define CORE_1_8V_SUPPORT BIT(26)
#define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
#define CORE_SYS_BUS_SUPPORT_64_BIT BIT(28)
#define CORE_CSR_CDC_CTLR_CFG0 0x130
#define CORE_SW_TRIG_FULL_CALIB BIT(16)
#define CORE_HW_AUTOCAL_ENA BIT(17)
#define CORE_CSR_CDC_CTLR_CFG1 0x134
#define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
#define CORE_TIMER_ENA BIT(16)
#define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
#define CORE_CSR_CDC_REFCOUNT_CFG 0x140
#define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
#define CORE_CDC_OFFSET_CFG 0x14C
#define CORE_CSR_CDC_DELAY_CFG 0x150
#define CORE_CDC_SLAVE_DDA_CFG 0x160
#define CORE_CSR_CDC_STATUS0 0x164
#define CORE_CALIBRATION_DONE BIT(0)
#define CORE_CDC_ERROR_CODE_MASK 0x7000000
#define CQ_CMD_DBG_RAM 0x110
#define CQ_CMD_DBG_RAM_WA 0x150
#define CQ_CMD_DBG_RAM_OL 0x154
#define CORE_CSR_CDC_GEN_CFG 0x178
#define CORE_CDC_SWITCH_BYPASS_OFF BIT(0)
#define CORE_CDC_SWITCH_RC_EN BIT(1)
#define CORE_CDC_T4_DLY_SEL BIT(0)
#define CORE_CMDIN_RCLK_EN BIT(1)
#define CORE_START_CDC_TRAFFIC BIT(6)
#define CORE_PWRSAVE_DLL BIT(3)
#define CORE_FIFO_ALT_EN BIT(10)
#define CORE_CMDEN_HS400_INPUT_MASK_CNT BIT(13)
#define DDR_CONFIG_POR_VAL 0x80040873
#define DLL_USR_CTL_POR_VAL 0x10800
#define ENABLE_DLL_LOCK_STATUS BIT(26)
#define FINE_TUNE_MODE_EN BIT(27)
#define BIAS_OK_SIGNAL BIT(29)
#define DLL_CONFIG_3_POR_VAL 0x10
#define INVALID_TUNING_PHASE -1
#define SDHCI_MSM_MIN_CLOCK 400000
#define CORE_FREQ_100MHZ (100 * 1000 * 1000)
#define TCXO_FREQ 19200000
#define ROUND(x, y) ((x) / (y) + \
((x) % (y) * 10 / (y) >= 5 ? 1 : 0))
#define CDR_SELEXT_SHIFT 20
#define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT)
#define CMUX_SHIFT_PHASE_SHIFT 24
#define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT)
#define MSM_MMC_AUTOSUSPEND_DELAY_MS 200
#define MSM_CLK_GATING_DELAY_MS 100 /* msec */
/* Timeout value to avoid infinite waiting for pwr_irq */
#define MSM_PWR_IRQ_TIMEOUT_MS 5000
/* Max load for eMMC Vdd supply */
#define MMC_VMMC_MAX_LOAD_UA 570000
/* Max load for eMMC Vdd-io supply */
#define MMC_VQMMC_MAX_LOAD_UA 325000
/*
* Due to level shifter insertion, HS mode frequency is reduced to 37.5MHz
* but clk's driver supply 37MHz only and uses ceil ops. So vote for
* 37MHz to avoid picking next ceil value.
*/
#define LEVEL_SHIFTER_HIGH_SPEED_FREQ 37000000
/* Max number of log pages */
#define SDHCI_MSM_MAX_LOG_SZ 10
#define sdhci_msm_log_str(host, fmt, ...) \
do { \
if (host->sdhci_msm_ipc_log_ctx && host->dbg_en) \
ipc_log_string(host->sdhci_msm_ipc_log_ctx, \
"%s: " fmt, __func__, ##__VA_ARGS__);\
} while (0)
#define VS_CAPABILITIES_SDR_50_SUPPORT BIT(0)
#define VS_CAPABILITIES_SDR_104_SUPPORT BIT(1)
#define VS_CAPABILITIES_DDR_50_SUPPORT BIT(2)
/* Max load for SD Vdd supply */
#define SD_VMMC_MAX_LOAD_UA 800000
/* Max load for SD Vdd-io supply */
#define SD_VQMMC_MAX_LOAD_UA 22000
#define msm_host_readl(msm_host, host, offset) \
msm_host->var_ops->msm_readl_relaxed(host, offset)
#define msm_host_writel(msm_host, val, host, offset) \
msm_host->var_ops->msm_writel_relaxed(val, host, offset)
/* CQHCI vendor specific registers */
#define CQHCI_VENDOR_CFG1 0xA00
#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13)
#define RCLK_TOGGLE BIT(1)
/* enum for writing to TLMM_NORTH_SPARE register as defined by pinctrl API */
#define TLMM_NORTH_SPARE 2
#define TLMM_NORTH_SPARE_CORE_IE BIT(15)
#define SDHCI_CMD_FLAGS_MASK 0xff
#define SDHCI_BOOT_DEVICE 0x0
static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
.core_mci_data_cnt = 0x35c,
.core_mci_status = 0x324,
.core_mci_fifo_cnt = 0x308,
.core_mci_version = 0x318,
.core_generics = 0x320,
.core_testbus_config = 0x32c,
.core_testbus_sel2_bit = 3,
.core_testbus_ena = (1 << 31),
.core_testbus_sel2 = (1 << 3),
.core_pwrctl_status = 0x240,
.core_pwrctl_mask = 0x244,
.core_pwrctl_clear = 0x248,
.core_pwrctl_ctl = 0x24c,
.core_sdcc_debug_reg = 0x358,
.core_dll_config = 0x200,
.core_dll_status = 0x208,
.core_vendor_spec = 0x20c,
.core_vendor_spec_adma_err_addr0 = 0x214,
.core_vendor_spec_adma_err_addr1 = 0x218,
.core_vendor_spec_func2 = 0x210,
.core_vendor_spec_capabilities0 = 0x21c,
.core_vendor_spec_capabilities1 = 0x220,
.core_ddr_200_cfg = 0x224,
.core_vendor_spec3 = 0x250,
.core_dll_config_2 = 0x254,
.core_dll_config_3 = 0x258,
.core_ddr_config = 0x25c,
.core_dll_usr_ctl = 0x388,
};
static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
.core_hc_mode = 0x78,
.core_mci_data_cnt = 0x30,
.core_mci_status = 0x34,
.core_mci_fifo_cnt = 0x44,
.core_mci_version = 0x050,
.core_generics = 0x70,
.core_testbus_config = 0x0cc,
.core_testbus_sel2_bit = 4,
.core_testbus_ena = (1 << 3),
.core_testbus_sel2 = (1 << 4),
.core_pwrctl_status = 0xdc,
.core_pwrctl_mask = 0xe0,
.core_pwrctl_clear = 0xe4,
.core_pwrctl_ctl = 0xe8,
.core_sdcc_debug_reg = 0x124,
.core_dll_config = 0x100,
.core_dll_status = 0x108,
.core_vendor_spec = 0x10c,
.core_vendor_spec_adma_err_addr0 = 0x114,
.core_vendor_spec_adma_err_addr1 = 0x118,
.core_vendor_spec_func2 = 0x110,
.core_vendor_spec_capabilities0 = 0x11c,
.core_ddr_200_cfg = 0x184,
.core_vendor_spec3 = 0x1b0,
.core_dll_config_2 = 0x1b4,
.core_dll_config_3 = 0x1b8,
.core_ddr_config_old = 0x1b8,
.core_ddr_config = 0x1bc,
};
/*
* From V5, register spaces have changed. Wrap this info in a structure
* and choose the data_structure based on version info mentioned in DT.
*/
struct sdhci_msm_variant_info {
bool mci_removed;
bool restore_dll_config;
const struct sdhci_msm_variant_ops *var_ops;
const struct sdhci_msm_offset *offset;
};
struct msm_bus_vectors {
u64 ab;
u64 ib;
};
struct msm_bus_path {
unsigned int num_paths;
struct msm_bus_vectors *vec;
};
enum vdd_io_level {
/* set vdd_io_data->low_vol_level */
VDD_IO_LOW,
/* set vdd_io_data->high_vol_level */
VDD_IO_HIGH,
/*
* set whatever there in voltage_level (third argument) of
* sdhci_msm_set_vdd_io_vol() function.
*/
VDD_IO_SET_LEVEL,
};
enum dll_init_context {
DLL_INIT_NORMAL = 0,
DLL_INIT_FROM_CX_COLLAPSE_EXIT,
};
static struct sdhci_msm_host *sdhci_slot[2];
static int sdhci_msm_update_qos_constraints(struct qos_cpu_group *qcg,
enum constraint type);
static void sdhci_msm_bus_voting(struct sdhci_host *host, bool enable);
static int sdhci_msm_dt_get_array(struct device *dev, const char *prop_name,
u32 **bw_vecs, int *len, u32 size);
static unsigned int sdhci_msm_get_sup_clk_rate(struct sdhci_host *host,
u32 req_clk);
static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host);
static void sdhci_msm_vbias_bypass_wa(struct sdhci_host *host);
static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
return msm_host->offset;
}
/*
* APIs to read/write to vendor specific registers which were there in the
* core_mem region before MCI was removed.
*/
static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
u32 offset)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
return readl_relaxed(msm_host->core_mem + offset);
}
static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
u32 offset)
{
return readl_relaxed(host->ioaddr + offset);
}
static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
struct sdhci_host *host, u32 offset)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
writel_relaxed(val, msm_host->core_mem + offset);
}
static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
struct sdhci_host *host, u32 offset)
{
writel_relaxed(val, host->ioaddr + offset);
}
static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
{
struct mmc_ios ios = host->mmc->ios;
/*
* The SDHC requires internal clock frequency to be double the
* actual clock that will be set for DDR mode. The controller
* uses the faster clock(100/400MHz) for some of its parts and
* send the actual required clock (50/200MHz) to the card.
*/
if (ios.timing == MMC_TIMING_UHS_DDR50 ||
ios.timing == MMC_TIMING_MMC_DDR52 ||
(ios.timing == MMC_TIMING_MMC_HS400 &&
ios.clock == MMC_HS200_MAX_DTR) ||
host->flags & SDHCI_HS400_TUNING)
return 2;
return 1;
}
static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_ios curr_ios = host->mmc->ios;
struct clk *core_clk = msm_host->bulk_clks[0].clk;
unsigned long achieved_rate;
unsigned int desired_rate;
unsigned int mult;
int rc;
mult = msm_get_clock_mult_for_bus_mode(host);
desired_rate = clock * mult;
if (curr_ios.timing == MMC_TIMING_SD_HS &&
msm_host->uses_level_shifter)
desired_rate = LEVEL_SHIFTER_HIGH_SPEED_FREQ;
rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
if (rc) {
pr_err("%s: Failed to set clock at rate %u at timing %d\n",
mmc_hostname(host->mmc), desired_rate,
curr_ios.timing);
return;
}
/*
* Qualcomm Technologies, Inc. clock drivers by default round
* clock _up_ if they can't make the requested rate. This is not
* good for SD. Yell if we encounter it.
*/
achieved_rate = clk_get_rate(core_clk);
if (achieved_rate > desired_rate)
pr_debug("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
mmc_hostname(host->mmc), desired_rate, achieved_rate);
host->mmc->actual_clock = achieved_rate / mult;
msm_host->clk_rate = desired_rate;
pr_debug("%s: Setting clock at rate %lu at timing %d\n",
mmc_hostname(host->mmc), achieved_rate,
curr_ios.timing);
sdhci_msm_log_str(msm_host, "Setting clock at rate %lu at timing %d\n",
clk_get_rate(core_clk), curr_ios.timing);
}
/* Platform specific tuning */
static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
{
u32 wait_cnt = 50;
u8 ck_out_en;
struct mmc_host *mmc = host->mmc;
const struct sdhci_msm_offset *msm_offset =
sdhci_priv_msm_offset(host);
/* Poll for CK_OUT_EN bit. max. poll time = 50us */
ck_out_en = !!(readl_relaxed(host->ioaddr +
msm_offset->core_dll_config) & CORE_CK_OUT_EN);
while (ck_out_en != poll) {
if (--wait_cnt == 0) {
dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
mmc_hostname(mmc), poll);
return -ETIMEDOUT;
}
udelay(1);
ck_out_en = !!(readl_relaxed(host->ioaddr +
msm_offset->core_dll_config) & CORE_CK_OUT_EN);
}
return 0;
}
static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
{
int rc;
static const u8 grey_coded_phase_table[] = {
0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
};
unsigned long flags;
u32 config;
struct mmc_host *mmc = host->mmc;
const struct sdhci_msm_offset *msm_offset =
sdhci_priv_msm_offset(host);
if (phase > 0xf)
return -EINVAL;
spin_lock_irqsave(&host->lock, flags);
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
rc = msm_dll_poll_ck_out_en(host, 0);
if (rc)
goto err_out;
/*
* Write the selected DLL clock output phase (0 ... 15)
* to CDR_SELEXT bit field of DLL_CONFIG register.
*/
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config &= ~CDR_SELEXT_MASK;
config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config |= CORE_CK_OUT_EN;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
rc = msm_dll_poll_ck_out_en(host, 1);
if (rc)
goto err_out;
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config |= CORE_CDR_EN;
config &= ~CORE_CDR_EXT_EN;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
goto out;
err_out:
dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
mmc_hostname(mmc), phase);
out:
spin_unlock_irqrestore(&host->lock, flags);
return rc;
}
/*
* Find out the greatest range of consecuitive selected
* DLL clock output phases that can be used as sampling
* setting for SD3.0 UHS-I card read operation (in SDR104
* timing mode) or for eMMC4.5 card read operation (in
* HS400/HS200 timing mode).
* Select the 3/4 of the range and configure the DLL with the
* selected DLL clock output phase.
*/
static int msm_find_most_appropriate_phase(struct sdhci_host *host,
u8 *phase_table, u8 total_phases)
{
int ret;
u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
u8 phases_per_row[MAX_PHASES] = { 0 };
int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
bool phase_0_found = false, phase_15_found = false;
struct mmc_host *mmc = host->mmc;
if (!total_phases || (total_phases > MAX_PHASES)) {
dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
mmc_hostname(mmc), total_phases);
return -EINVAL;
}
for (cnt = 0; cnt < total_phases; cnt++) {
ranges[row_index][col_index] = phase_table[cnt];
phases_per_row[row_index] += 1;
col_index++;
if ((cnt + 1) == total_phases) {
continue;
/* check if next phase in phase_table is consecutive or not */
} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
row_index++;
col_index = 0;
}
}
if (row_index >= MAX_PHASES)
return -EINVAL;
/* Check if phase-0 is present in first valid window? */
if (!ranges[0][0]) {
phase_0_found = true;
phase_0_raw_index = 0;
/* Check if cycle exist between 2 valid windows */
for (cnt = 1; cnt <= row_index; cnt++) {
if (phases_per_row[cnt]) {
for (i = 0; i < phases_per_row[cnt]; i++) {
if (ranges[cnt][i] == 15) {
phase_15_found = true;
phase_15_raw_index = cnt;
break;
}
}
}
}
}
/* If 2 valid windows form cycle then merge them as single window */
if (phase_0_found && phase_15_found) {
/* number of phases in raw where phase 0 is present */
u8 phases_0 = phases_per_row[phase_0_raw_index];
/* number of phases in raw where phase 15 is present */
u8 phases_15 = phases_per_row[phase_15_raw_index];
if (phases_0 + phases_15 >= MAX_PHASES)
/*
* If there are more than 1 phase windows then total
* number of phases in both the windows should not be
* more than or equal to MAX_PHASES.
*/
return -EINVAL;
/* Merge 2 cyclic windows */
i = phases_15;
for (cnt = 0; cnt < phases_0; cnt++) {
ranges[phase_15_raw_index][i] =
ranges[phase_0_raw_index][cnt];
if (++i >= MAX_PHASES)
break;
}
phases_per_row[phase_0_raw_index] = 0;
phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
}
for (cnt = 0; cnt <= row_index; cnt++) {
if (phases_per_row[cnt] > curr_max) {
curr_max = phases_per_row[cnt];
selected_row_index = cnt;
}
}
i = (curr_max * 3) / 4;
if (i)
i--;
ret = ranges[selected_row_index][i];
if (ret >= MAX_PHASES) {
ret = -EINVAL;
dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
mmc_hostname(mmc), ret);
}
return ret;
}
static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
{
u32 mclk_freq = 0, config;
const struct sdhci_msm_offset *msm_offset =
sdhci_priv_msm_offset(host);
/* Program the MCLK value to MCLK_FREQ bit field */
if (host->clock <= 112000000)
mclk_freq = 0;
else if (host->clock <= 125000000)
mclk_freq = 1;
else if (host->clock <= 137000000)
mclk_freq = 2;
else if (host->clock <= 150000000)
mclk_freq = 3;
else if (host->clock <= 162000000)
mclk_freq = 4;
else if (host->clock <= 175000000)
mclk_freq = 5;
else if (host->clock <= 187000000)
mclk_freq = 6;
else if (host->clock <= 208000000)
mclk_freq = 7;
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config &= ~CMUX_SHIFT_PHASE_MASK;
config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
}
/* Initialize the DLL (Programmable Delay Line) */
static int msm_init_cm_dll(struct sdhci_host *host,
enum dll_init_context init_context)
{
struct mmc_host *mmc = host->mmc;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_ios curr_ios = mmc->ios;
int wait_cnt = 50;
int rc = 0;
unsigned long flags, dll_clock = 0;
u32 ddr_cfg_offset, core_vendor_spec;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
dll_clock = sdhci_msm_get_sup_clk_rate(host, host->clock);
spin_lock_irqsave(&host->lock, flags);
core_vendor_spec = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec);
/*
* Step 1 - Always disable PWRSAVE during the DLL power
* up regardless of its current setting.
*/
writel_relaxed((core_vendor_spec & ~CORE_CLK_PWRSAVE),
host->ioaddr +
msm_offset->core_vendor_spec);
if (msm_host->use_14lpp_dll_reset) {
/* Step 2 - Disable CK_OUT */
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_dll_config)
& ~CORE_CK_OUT_EN), host->ioaddr +
msm_offset->core_dll_config);
/* Step 3 - Disable the DLL clock */
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_2)
| CORE_DLL_CLOCK_DISABLE), host->ioaddr +
msm_offset->core_dll_config_2);
}
/*
* Step 4 - Write 1 to DLL_RST bit of DLL_CONFIG register
* and Write 1 to DLL_PDN bit of DLL_CONFIG register.
*/
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_dll_config) | CORE_DLL_RST),
host->ioaddr + msm_offset->core_dll_config);
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_dll_config) | CORE_DLL_PDN),
host->ioaddr + msm_offset->core_dll_config);
/*
* Step 5 and Step 6 - Configure Tassadar DLL and USER_CTRL
* (Only applicable for 7FF projects).
*/
if (msm_host->use_7nm_dll) {
if (msm_host->dll_hsr) {
writel_relaxed(msm_host->dll_hsr->dll_config_3,
host->ioaddr +
msm_offset->core_dll_config_3);
writel_relaxed(msm_host->dll_hsr->dll_usr_ctl,
host->ioaddr +
msm_offset->core_dll_usr_ctl);
} else {
writel_relaxed(DLL_CONFIG_3_POR_VAL, host->ioaddr +
msm_offset->core_dll_config_3);
writel_relaxed(DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL,
host->ioaddr +
msm_offset->core_dll_usr_ctl);
}
}
/*
* Step 8 - Set DDR_CONFIG since step 7 is setting TEST_CTRL
* that can be skipped.
*/
if (msm_host->updated_ddr_cfg)
ddr_cfg_offset = msm_offset->core_ddr_config;
else
ddr_cfg_offset = msm_offset->core_ddr_config_old;
if (msm_host->dll_hsr && msm_host->dll_hsr->ddr_config)
writel_relaxed(msm_host->dll_hsr->ddr_config, host->ioaddr +
ddr_cfg_offset);
else
writel_relaxed(DDR_CONFIG_POR_VAL, host->ioaddr +
ddr_cfg_offset);
/* Step 9 - Set DLL_CONFIG_2 */
if (msm_host->use_14lpp_dll_reset) {
u32 mclk_freq = 0;
int cycle_cnt = 0;
/*
* Only configure the mclk_freq in normal DLL init
* context. If the DLL init is coming from
* CX Collapse Exit context, the host->clock may be zero.
* The DLL_CONFIG_2 register has already been restored to
* proper value prior to getting here.
*/
if (init_context == DLL_INIT_NORMAL) {
cycle_cnt = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_2)
& CORE_FLL_CYCLE_CNT ? 8 : 4;
mclk_freq = ROUND(dll_clock * cycle_cnt, TCXO_FREQ);
if (dll_clock < 100000000)
pr_err("%s: %s: Non standard clk freq =%u\n",
mmc_hostname(mmc), __func__, dll_clock);
writel_relaxed(((readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_2)
& ~(0xFF << 10)) | (mclk_freq << 10)),
host->ioaddr + msm_offset->core_dll_config_2);
}
if (msm_host->dll_lock_bist_fail_wa &&
(curr_ios.timing == MMC_TIMING_UHS_SDR104 ||
!mmc_card_is_removable(mmc))) {
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_2)
| CORE_LOW_FREQ_MODE), host->ioaddr +
msm_offset->core_dll_config_2);
}
}
/*
* Step 10 - Update the lower two bytes of DLL_CONFIG only with
* HSR values. Since these are the static settings.
*/
if (msm_host->dll_hsr) {
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_dll_config) |
(msm_host->dll_hsr->dll_config & 0xffff)),
host->ioaddr + msm_offset->core_dll_config);
}
/* Step 11 - Wait for 52us */
spin_unlock_irqrestore(&host->lock, flags);
usleep_range(55, 60);
spin_lock_irqsave(&host->lock, flags);
/*
* Step12 - Write 0 to DLL_RST bit of DLL_CONFIG register
* and Write 0 to DLL_PDN bit of DLL_CONFIG register.
*/
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_dll_config) & ~CORE_DLL_RST),
host->ioaddr + msm_offset->core_dll_config);
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_dll_config) & ~CORE_DLL_PDN),
host->ioaddr + msm_offset->core_dll_config);
/* Step 13 - Write 1 to DLL_RST bit of DLL_CONFIG register */
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_dll_config) | CORE_DLL_RST),
host->ioaddr + msm_offset->core_dll_config);
/* Step 14 - Write 0 to DLL_RST bit of DLL_CONFIG register */
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_dll_config) & ~CORE_DLL_RST),
host->ioaddr + msm_offset->core_dll_config);
/* Step 15 - Set CORE_DLL_CLOCK_DISABLE to 0 */
if (msm_host->use_14lpp_dll_reset) {
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_2)
& ~CORE_DLL_CLOCK_DISABLE), host->ioaddr +
msm_offset->core_dll_config_2);
}
/* Step 16 - Set DLL_EN bit to 1. */
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_dll_config) | CORE_DLL_EN),
host->ioaddr + msm_offset->core_dll_config);
/*
* Step 17 - Wait for 8000 input clock. Here we calculate the
* delay from fixed clock freq 192MHz, which turns out 42us.
*/
spin_unlock_irqrestore(&host->lock, flags);
usleep_range(45, 50);
spin_lock_irqsave(&host->lock, flags);
/* Step 18 - Set CK_OUT_EN bit to 1. */
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_dll_config)
| CORE_CK_OUT_EN), host->ioaddr +
msm_offset->core_dll_config);
/*
* Step 19 - Wait until DLL_LOCK bit of DLL_STATUS register
* becomes '1'.
*/
while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
CORE_DLL_LOCK)) {
/* max. wait for 50us sec for LOCK bit to be set */
if (--wait_cnt == 0) {
dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
mmc_hostname(mmc));
rc = -ETIMEDOUT;
goto out;
}
/* wait for 1us before polling again */
udelay(1);
}
out:
if (core_vendor_spec & CORE_CLK_PWRSAVE) {
/* Step 20 - Reenable PWRSAVE as needed */
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec)
| CORE_CLK_PWRSAVE), host->ioaddr +
msm_offset->core_vendor_spec);
}
spin_unlock_irqrestore(&host->lock, flags);
return rc;
}
static void msm_hc_select_default(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u32 config;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
if (!msm_host->use_cdclp533) {
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec3);
config &= ~CORE_PWRSAVE_DLL;
writel_relaxed(config, host->ioaddr +
msm_offset->core_vendor_spec3);
}
config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
config &= ~CORE_HC_MCLK_SEL_MASK;
config |= CORE_HC_MCLK_SEL_DFLT;
writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
/*
* Disable HC_SELECT_IN to be able to use the UHS mode select
* configuration from Host Control2 register for all other
* modes.
* Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
* in VENDOR_SPEC_FUNC
*/
config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
config &= ~CORE_HC_SELECT_IN_EN;
config &= ~CORE_HC_SELECT_IN_MASK;
writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
/*
* Make sure above writes impacting free running MCLK are completed
* before changing the clk_rate at GCC.
*/
wmb();
}
/*
* After MCLK ugating, toggle the FIFO write clock to get
* the FIFO pointers and flags to valid state.
*/
static void sdhci_msm_toggle_fifo_write_clk(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_host_offset = msm_host->offset;
struct mmc_ios ios = host->mmc->ios;
u32 config;
if ((msm_host->tuning_done || ios.enhanced_strobe) &&
(host->mmc->ios.timing == MMC_TIMING_MMC_HS400)) {
/*
* set HC_REG_DLL_CONFIG_3[1] to select MCLK as
* DLL input clock
*/
config = readl_relaxed(host->ioaddr + msm_host_offset->core_dll_config_3);
config |= RCLK_TOGGLE;
writel_relaxed(config, host->ioaddr + msm_host_offset->core_dll_config_3);
/* ensure above write as toggling same bit quickly */
wmb();
udelay(2);
/*
* clear HC_REG_DLL_CONFIG_3[1] to select RCLK as
* DLL input clock
*/
config = readl_relaxed(host->ioaddr + msm_host_offset->core_dll_config_3);
config &= ~RCLK_TOGGLE;
writel_relaxed(config, host->ioaddr + msm_host_offset->core_dll_config_3);
}
}
static void msm_hc_select_hs400(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_ios ios = host->mmc->ios;
u32 config, dll_lock;
int rc;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
/* Select the divided clock (free running MCLK/2) */
config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
config &= ~CORE_HC_MCLK_SEL_MASK;
config |= CORE_HC_MCLK_SEL_HS400;
writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
/*
* Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
* register
*/
if ((msm_host->tuning_done || ios.enhanced_strobe) &&
!msm_host->calibration_done) {
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec);
config |= CORE_HC_SELECT_IN_HS400;
config |= CORE_HC_SELECT_IN_EN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_vendor_spec);
}
if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
/*
* Poll on DLL_LOCK or DDR_DLL_LOCK bits in
* core_dll_status to be set. This should get set
* within 15 us at 200 MHz.
*/
rc = readl_relaxed_poll_timeout(host->ioaddr +
msm_offset->core_dll_status,
dll_lock,
(dll_lock &
(CORE_DLL_LOCK |
CORE_DDR_DLL_LOCK)), 10,
1000);
if (rc == -ETIMEDOUT)
pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
mmc_hostname(host->mmc), dll_lock);
}
/*
* Make sure above writes impacting free running MCLK are completed
* before changing the clk_rate at GCC.
*/
wmb();
}
/*
* sdhci_msm_hc_select_mode :- In general all timing modes are
* controlled via UHS mode select in Host Control2 register.
* eMMC specific HS200/HS400 doesn't have their respective modes
* defined here, hence we use these values.
*
* HS200 - SDR104 (Since they both are equivalent in functionality)
* HS400 - This involves multiple configurations
* Initially SDR104 - when tuning is required as HS200
* Then when switching to DDR @ 400MHz (HS400) we use
* the vendor specific HC_SELECT_IN to control the mode.
*
* In addition to controlling the modes we also need to select the
* correct input clock for DLL depending on the mode.
*
* HS400 - divided clock (free running MCLK/2)
* All other modes - default (free running MCLK)
*/
static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
{
struct mmc_ios ios = host->mmc->ios;
if (ios.timing == MMC_TIMING_MMC_HS400 ||
host->flags & SDHCI_HS400_TUNING)
msm_hc_select_hs400(host);
else
msm_hc_select_default(host);
}
static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u32 config, calib_done;
int ret;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
/*
* Retuning in HS400 (DDR mode) will fail, just reset the
* tuning block and restore the saved tuning phase.
*/
ret = msm_init_cm_dll(host, DLL_INIT_NORMAL);
if (ret)
goto out;
/* Set the selected phase in delay line hw block */
ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
if (ret)
goto out;
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
config |= CORE_CMD_DAT_TRACK_SEL;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
config &= ~CORE_CDC_T4_DLY_SEL;
writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config |= CORE_CDC_SWITCH_RC_EN;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
config &= ~CORE_START_CDC_TRAFFIC;
writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
/* Perform CDC Register Initialization Sequence */
writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
/* CDC HW Calibration */
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config |= CORE_SW_TRIG_FULL_CALIB;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config &= ~CORE_SW_TRIG_FULL_CALIB;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config |= CORE_HW_AUTOCAL_ENA;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
config |= CORE_TIMER_ENA;
writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
calib_done,
(calib_done & CORE_CALIBRATION_DONE),
1, 50);
if (ret == -ETIMEDOUT) {
pr_err("%s: %s: CDC calibration was not completed\n",
mmc_hostname(host->mmc), __func__);
goto out;
}
ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
& CORE_CDC_ERROR_CODE_MASK;
if (ret) {
pr_err("%s: %s: CDC error code %d\n",
mmc_hostname(host->mmc), __func__, ret);
ret = -EINVAL;
goto out;
}
config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
config |= CORE_START_CDC_TRAFFIC;
writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
out:
pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
__func__, ret);
return ret;
}
static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
u32 dll_status, config, ddr_cfg_offset;
int ret;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset =
sdhci_priv_msm_offset(host);
pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
/*
* Currently the core_ddr_config register defaults to desired
* configuration on reset. Currently reprogramming the power on
* reset (POR) value in case it might have been modified by
* bootloaders. In the future, if this changes, then the desired
* values will need to be programmed appropriately.
*/
if (msm_host->updated_ddr_cfg)
ddr_cfg_offset = msm_offset->core_ddr_config;
else
ddr_cfg_offset = msm_offset->core_ddr_config_old;
if (msm_host->dll_hsr && msm_host->dll_hsr->ddr_config)
config = msm_host->dll_hsr->ddr_config;
else
config = DDR_CONFIG_POR_VAL;
writel_relaxed(config, host->ioaddr + ddr_cfg_offset);
if (mmc->ios.enhanced_strobe) {
config = readl_relaxed(host->ioaddr +
msm_offset->core_ddr_200_cfg);
config |= CORE_CMDIN_RCLK_EN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_ddr_200_cfg);
}
config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
config |= CORE_DDR_CAL_EN;
writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
ret = readl_relaxed_poll_timeout(host->ioaddr +
msm_offset->core_dll_status,
dll_status,
(dll_status & CORE_DDR_DLL_LOCK),
10, 1000);
if (ret == -ETIMEDOUT) {
pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
mmc_hostname(host->mmc), __func__);
goto out;
}
/*
* Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
* When MCLK is gated OFF, it is not gated for less than 0.5us
* and MCLK must be switched on for at-least 1us before DATA
* starts coming. Controllers with 14lpp and later tech DLL cannot
* guarantee above requirement. So PWRSAVE_DLL should not be
* turned on for host controllers using this DLL.
*/
if (!msm_host->use_14lpp_dll_reset) {
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec3);
config |= CORE_PWRSAVE_DLL;
writel_relaxed(config, host->ioaddr +
msm_offset->core_vendor_spec3);
}
/*
* Drain writebuffer to ensure above DLL calibration
* and PWRSAVE DLL is enabled.
*/
wmb();
out:
pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
__func__, ret);
return ret;
}
static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int ret;
struct mmc_host *mmc = host->mmc;
u32 config;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
/*
* Retuning in HS400 (DDR mode) will fail, just reset the
* tuning block and restore the saved tuning phase.
*/
ret = msm_init_cm_dll(host, DLL_INIT_NORMAL);
if (ret)
goto out;
if (!mmc->ios.enhanced_strobe) {
/* set the selected phase in delay line hw block */
ret = msm_config_cm_dll_phase(host,
msm_host->saved_tuning_phase);
if (ret)
goto out;
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_CMD_DAT_TRACK_SEL;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
}
if (msm_host->use_cdclp533)
ret = sdhci_msm_cdclp533_calibration(host);
else
ret = sdhci_msm_cm_dll_sdc4_calibration(host);
out:
pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
__func__, ret);
return ret;
}
static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
if (ios->timing == MMC_TIMING_UHS_SDR50 &&
host->flags & SDHCI_SDR50_NEEDS_TUNING)
return true;
/*
* Tuning is required for SDR104, HS200 and HS400 cards and
* if clock frequency is greater than 100MHz in these modes.
*/
if (host->clock <= CORE_FREQ_100MHZ ||
!(ios->timing == MMC_TIMING_MMC_HS400 ||
ios->timing == MMC_TIMING_MMC_HS200 ||
ios->timing == MMC_TIMING_UHS_SDR104) ||
ios->enhanced_strobe)
return false;
return true;
}
static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int ret;
/*
* SDR DLL comes into picture only for timing modes which needs
* tuning.
*/
if (!sdhci_msm_is_tuning_needed(host))
return 0;
/* Reset the tuning block */
ret = msm_init_cm_dll(host, DLL_INIT_NORMAL);
if (ret)
return ret;
/* Restore the tuning block */
ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
return ret;
}
static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
{
const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
u32 config, oldconfig = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config = oldconfig;
if (enable) {
config |= CORE_CDR_EN;
config &= ~CORE_CDR_EXT_EN;
} else {
config &= ~CORE_CDR_EN;
config |= CORE_CDR_EXT_EN;
}
if (config != oldconfig) {
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
}
}
static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
int tuning_seq_cnt = 10;
u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
int rc = 0;
u32 config;
struct mmc_ios ios = host->mmc->ios;
u32 core_vendor_spec;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset =
sdhci_priv_msm_offset(host);
if (!sdhci_msm_is_tuning_needed(host)) {
msm_host->use_cdr = false;
sdhci_msm_set_cdr(host, false);
return 0;
}
/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
msm_host->use_cdr = true;
/*
* Clear tuning_done flag before tuning to ensure proper
* HS400 settings.
*/
msm_host->tuning_done = 0;
if (ios.timing == MMC_TIMING_UHS_SDR50 &&
host->flags & SDHCI_SDR50_NEEDS_TUNING) {
/*
* Bit1 SDHCI_CTRL_UHS_SDR50 of the Host Control 2 register is
* already set by the sdhci_set_ios -> sdhci_msm_set_uhs_signaling().
* It is not necessary to set it again here.
*/
config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
config |= CORE_HC_SELECT_IN_EN;
config &= ~CORE_HC_SELECT_IN_MASK;
config |= CORE_HC_SELECT_IN_SDR50;
writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
}
/*
* For HS400 tuning in HS200 timing requires:
* - select MCLK/2 in VENDOR_SPEC
* - program MCLK to 400MHz (or nearest supported) in GCC
*/
if (host->flags & SDHCI_HS400_TUNING) {
sdhci_msm_hc_select_mode(host);
msm_set_clock_rate_for_bus_mode(host, ios.clock);
host->flags &= ~SDHCI_HS400_TUNING;
}
core_vendor_spec = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec);
/* Make sure that PWRSAVE bit is set to '0' during tuning */
writel_relaxed((core_vendor_spec & ~CORE_CLK_PWRSAVE),
host->ioaddr +
msm_offset->core_vendor_spec);
retry:
/* First of all reset the tuning block */
rc = msm_init_cm_dll(host, DLL_INIT_NORMAL);
if (rc)
goto out;
phase = 0;
do {
/* Set the phase in delay line hw block */
rc = msm_config_cm_dll_phase(host, phase);
if (rc)
goto out;
rc = mmc_send_tuning(mmc, opcode, NULL);
if (!rc) {
/* Tuning is successful at this tuning point */
tuned_phases[tuned_phase_cnt++] = phase;
dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
mmc_hostname(mmc), phase);
}
} while (++phase < ARRAY_SIZE(tuned_phases));
if (tuned_phase_cnt) {
if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
/*
* All phases valid is _almost_ as bad as no phases
* valid. Probably all phases are not really reliable
* but we didn't detect where the unreliable place is.
* That means we'll essentially be guessing and hoping
* we get a good phase. Better to try a few times.
*/
dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
mmc_hostname(mmc));
if (--tuning_seq_cnt) {
tuned_phase_cnt = 0;
goto retry;
}
}
rc = msm_find_most_appropriate_phase(host, tuned_phases,
tuned_phase_cnt);
if (rc < 0)
goto out;
else
phase = rc;
/*
* Finally set the selected phase in delay
* line hw block.
*/
rc = msm_config_cm_dll_phase(host, phase);
if (rc)
goto out;
msm_host->saved_tuning_phase = phase;
dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
mmc_hostname(mmc), phase);
sdhci_msm_log_str(msm_host, "Setting the tuning phase to %d\n",
phase);
} else {
if (--tuning_seq_cnt)
goto retry;
/* Tuning failed */
dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
mmc_hostname(mmc));
sdhci_msm_log_str(msm_host, "No tuning point found\n");
rc = -EIO;
}
if (!rc)
msm_host->tuning_done = true;
out:
/* Set PWRSAVE bit to '1' after completion of tuning as needed */
if (core_vendor_spec & CORE_CLK_PWRSAVE) {
writel_relaxed((readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec)
| CORE_CLK_PWRSAVE), host->ioaddr +
msm_offset->core_vendor_spec);
}
return rc;
}
/*
* sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
* This needs to be done for both tuning and enhanced_strobe mode.
* DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
* fixed feedback clock is used.
*/
static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int ret;
if (host->clock > CORE_FREQ_100MHZ &&
(msm_host->tuning_done || ios->enhanced_strobe) &&
!msm_host->calibration_done) {
ret = sdhci_msm_hs400_dll_calibration(host);
if (!ret)
msm_host->calibration_done = true;
else
pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
mmc_hostname(host->mmc), ret);
}
}
static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
unsigned int uhs)
{
struct mmc_host *mmc = host->mmc;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u16 ctrl_2;
u32 config;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
switch (uhs) {
case MMC_TIMING_UHS_SDR12:
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
break;
case MMC_TIMING_UHS_SDR25:
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
break;
case MMC_TIMING_UHS_SDR50:
ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
break;
case MMC_TIMING_MMC_HS400:
case MMC_TIMING_MMC_HS200:
case MMC_TIMING_UHS_SDR104:
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
break;
}
/*
* When clock frequency is less than 100MHz, the feedback clock must be
* provided and DLL must not be used so that tuning can be skipped. To
* provide feedback clock, the mode selection can be any value less
* than 3'b011 in bits [2:0] of HOST CONTROL2 register.
*/
if (host->clock <= CORE_FREQ_100MHZ) {
if (uhs == MMC_TIMING_MMC_HS400 ||
uhs == MMC_TIMING_MMC_HS200 ||
uhs == MMC_TIMING_UHS_SDR104)
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
/*
* DLL is not required for clock <= 100MHz
* Thus, make sure DLL it is disabled when not required
*/
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_DLL_RST;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
config |= CORE_DLL_PDN;
writel_relaxed(config, host->ioaddr +
msm_offset->core_dll_config);
/*
* The DLL needs to be restored and CDCLP533 recalibrated
* when the clock frequency is set back to 400MHz.
*/
msm_host->calibration_done = false;
}
dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
sdhci_msm_hs400(host, &mmc->ios);
}
/*
* Ensure larger discard size by always setting max_busy_timeout to zero.
* This will always return max_busy_timeout as zero to the sdhci layer.
*/
static unsigned int sdhci_msm_get_max_timeout_count(struct sdhci_host *host)
{
return 0;
}
#define MAX_PROP_SIZE 32
static int sdhci_msm_dt_parse_vreg_info(struct device *dev,
struct sdhci_msm_reg_data **vreg_data, const char *vreg_name)
{
int len, ret = 0;
const __be32 *prop;
char prop_name[MAX_PROP_SIZE];
struct sdhci_msm_reg_data *vreg;
struct device_node *np = dev->of_node;
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
snprintf(prop_name, MAX_PROP_SIZE, "%s-supply", vreg_name);
if (!of_parse_phandle(np, prop_name, 0)) {
dev_info(dev, "No vreg data found for %s\n", vreg_name);
ret = -ENOENT;
return ret;
}
vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
if (!vreg) {
ret = -ENOMEM;
return ret;
}
vreg->msm_host = msm_host;
vreg->name = vreg_name;
snprintf(prop_name, MAX_PROP_SIZE,
"qcom,%s-always-on", vreg_name);
if (of_get_property(np, prop_name, NULL))
vreg->is_always_on = true;
snprintf(prop_name, MAX_PROP_SIZE,
"qcom,%s-lpm-sup", vreg_name);
if (of_get_property(np, prop_name, NULL))
vreg->lpm_sup = true;
snprintf(prop_name, MAX_PROP_SIZE,
"qcom,%s-voltage-level", vreg_name);
prop = of_get_property(np, prop_name, &len);
if (!prop || (len != (2 * sizeof(__be32)))) {
vreg->is_voltage_supplied = false;
dev_warn(dev, "%s %s property\n",
prop ? "invalid format" : "no", prop_name);
} else {
vreg->is_voltage_supplied = true;
vreg->low_vol_level = be32_to_cpup(&prop[0]);
vreg->high_vol_level = be32_to_cpup(&prop[1]);
}
snprintf(prop_name, MAX_PROP_SIZE,
"qcom,%s-current-level", vreg_name);
prop = of_get_property(np, prop_name, &len);
if (!prop || (len != (2 * sizeof(__be32)))) {
dev_warn(dev, "%s %s property\n",
prop ? "invalid format" : "no", prop_name);
} else {
vreg->lpm_uA = be32_to_cpup(&prop[0]);
vreg->hpm_uA = be32_to_cpup(&prop[1]);
}
*vreg_data = vreg;
dev_dbg(dev, "%s: %s %s vol=[%d %d]uV, curr=[%d %d]uA\n",
vreg->name, vreg->is_always_on ? "always_on," : "",
vreg->lpm_sup ? "lpm_sup," : "", vreg->low_vol_level,
vreg->high_vol_level, vreg->lpm_uA, vreg->hpm_uA);
return ret;
}
static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
{
struct platform_device *pdev = msm_host->pdev;
int ret;
if (level)
ret = pinctrl_pm_select_default_state(&pdev->dev);
else
ret = pinctrl_pm_select_sleep_state(&pdev->dev);
return ret;
}
static int sdhci_msm_dt_parse_hsr_info(struct device *dev,
struct sdhci_msm_host *msm_host)
{
u32 *dll_hsr_table = NULL;
int dll_hsr_table_len, dll_hsr_reg_count;
int ret = 0;
if (sdhci_msm_dt_get_array(dev, "qcom,dll-hsr-list",
&dll_hsr_table, &dll_hsr_table_len, 0))
goto skip_hsr;
dll_hsr_reg_count = sizeof(struct sdhci_msm_dll_hsr) / sizeof(u32);
if (dll_hsr_table_len != dll_hsr_reg_count) {
dev_err(dev, "Number of HSR entries are not matching\n");
ret = -EINVAL;
} else {
msm_host->dll_hsr = (struct sdhci_msm_dll_hsr *)dll_hsr_table;
}
skip_hsr:
if (!msm_host->dll_hsr)
dev_info(dev, "Failed to get dll hsr settings from dt\n");
return ret;
}
static int sdhci_msm_parse_reset_data(struct device *dev,
struct sdhci_msm_host *msm_host)
{
int ret = 0;
msm_host->core_reset = devm_reset_control_get(dev,
"core_reset");
if (IS_ERR(msm_host->core_reset)) {
ret = PTR_ERR(msm_host->core_reset);
dev_err(dev, "core_reset unavailable,err = %d\n",
ret);
msm_host->core_reset = NULL;
}
return ret;
}
/* Parse platform data */
static bool sdhci_msm_populate_pdata(struct device *dev,
struct sdhci_msm_host *msm_host)
{
struct device_node *np = dev->of_node;
int ice_clk_table_len;
u32 *ice_clk_table = NULL;
msm_host->vreg_data = devm_kzalloc(dev, sizeof(struct
sdhci_msm_vreg_data),
GFP_KERNEL);
if (!msm_host->vreg_data) {
dev_err(dev, "failed to allocate memory for vreg data\n");
goto out;
}
if (sdhci_msm_dt_parse_vreg_info(dev, &msm_host->vreg_data->vdd_data,
"vdd")) {
dev_err(dev, "failed parsing vdd data\n");
goto out;
}
if (sdhci_msm_dt_parse_vreg_info(dev,
&msm_host->vreg_data->vdd_io_data,
"vdd-io")) {
dev_err(dev, "failed parsing vdd-io data\n");
goto out;
}
if (of_get_property(np, "qcom,core_3_0v_support", NULL))
msm_host->fake_core_3_0v_support = true;
msm_host->regs_restore.is_supported =
of_property_read_bool(np, "qcom,restore-after-cx-collapse");
msm_host->uses_level_shifter =
of_property_read_bool(np, "qcom,uses_level_shifter");
msm_host->dll_lock_bist_fail_wa =
of_property_read_bool(np, "qcom,dll_lock_bist_fail_wa");
if (sdhci_msm_dt_parse_hsr_info(dev, msm_host))
goto out;
if (!sdhci_msm_dt_get_array(dev, "qcom,ice-clk-rates",
&ice_clk_table, &ice_clk_table_len, 0)) {
if (ice_clk_table && ice_clk_table_len) {
if (ice_clk_table_len != 2) {
dev_err(dev, "Need max and min frequencies\n");
goto out;
}
msm_host->sup_ice_clk_table = ice_clk_table;
msm_host->sup_ice_clk_cnt = ice_clk_table_len;
msm_host->ice_clk_max = msm_host->sup_ice_clk_table[0];
msm_host->ice_clk_min = msm_host->sup_ice_clk_table[1];
dev_dbg(dev, "ICE clock rates (Hz): max: %u min: %u\n",
msm_host->ice_clk_max, msm_host->ice_clk_min);
}
}
msm_host->vbias_skip_wa =
of_property_read_bool(np, "qcom,vbias-skip-wa");
sdhci_msm_parse_reset_data(dev, msm_host);
#if IS_ENABLED(CONFIG_MMC_SDHCI_MSM_SCALING)
sdhci_msm_scale_parse_dt(dev, msm_host);
#endif
return false;
out:
return true;
}
static void msm_config_vmmc_regulator(struct mmc_host *mmc, bool hpm)
{
int load;
if (!hpm)
load = 0;
else if (!mmc->card)
load = max(MMC_VMMC_MAX_LOAD_UA, SD_VMMC_MAX_LOAD_UA);
else if (mmc_card_mmc(mmc->card))
load = MMC_VMMC_MAX_LOAD_UA;
else if (mmc_card_sd(mmc->card))
load = SD_VMMC_MAX_LOAD_UA;
else
return;
regulator_set_load(mmc->supply.vmmc, load);
}
static void msm_config_vqmmc_regulator(struct mmc_host *mmc, bool hpm)
{
int load;
if (!hpm)
load = 0;
else if (!mmc->card)
load = max(MMC_VQMMC_MAX_LOAD_UA, SD_VQMMC_MAX_LOAD_UA);
else if (mmc_card_sd(mmc->card))
load = SD_VQMMC_MAX_LOAD_UA;
else
return;
regulator_set_load(mmc->supply.vqmmc, load);
}
static int sdhci_msm_set_vmmc(struct sdhci_msm_host *msm_host,
struct mmc_host *mmc, bool hpm)
{
if (IS_ERR(mmc->supply.vmmc))
return 0;
msm_config_vmmc_regulator(mmc, hpm);
return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
}
static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
struct mmc_host *mmc, bool level)
{
int ret;
struct mmc_ios ios;
if (msm_host->vqmmc_enabled == level)
return 0;
msm_config_vqmmc_regulator(mmc, level);
if (level) {
/* Set the IO voltage regulator to default voltage level */
if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
ret = mmc_regulator_set_vqmmc(mmc, &ios);
if (ret < 0) {
dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
mmc_hostname(mmc), ret);
goto out;
}
}
ret = regulator_enable(mmc->supply.vqmmc);
} else {
ret = regulator_disable(mmc->supply.vqmmc);
}
if (ret)
dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
mmc_hostname(mmc), level ? "en":"dis", ret);
else
msm_host->vqmmc_enabled = level;
out:
return ret;
}
static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
struct mmc_host *mmc, bool hpm)
{
int load, ret;
load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
ret = regulator_set_load(mmc->supply.vqmmc, load);
if (ret)
dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
mmc_hostname(mmc), ret);
return ret;
}
static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
struct mmc_host *mmc, bool level)
{
int ret;
bool always_on;
if (IS_ERR(mmc->supply.vqmmc) ||
(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
return 0;
/*
* For eMMC don't turn off Vqmmc, Instead just configure it in LPM
* and HPM modes by setting the corresponding load.
*
* Till eMMC is initialized (i.e. always_on == 0), just turn on/off
* Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
* gets invoked. Once eMMC is initialized (i.e. always_on == 1),
* Vqmmc should remain ON, So just set the load instead of turning it
* off/on.
*/
always_on = !mmc_card_is_removable(mmc) &&
mmc->card && mmc_card_mmc(mmc->card);
if (always_on)
ret = msm_config_vqmmc_mode(msm_host, mmc, level);
else
ret = msm_toggle_vqmmc(msm_host, mmc, level);
return ret;
}
static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
{
init_waitqueue_head(&msm_host->pwr_irq_wait);
}
static inline void sdhci_msm_complete_pwr_irq_wait(
struct sdhci_msm_host *msm_host)
{
wake_up(&msm_host->pwr_irq_wait);
}
/*
* sdhci_msm_check_power_status API should be called when registers writes
* which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
* To what state the register writes will change the IO lines should be passed
* as the argument req_type. This API will check whether the IO line's state
* is already the expected state and will wait for power irq only if
* power irq is expected to be triggered based on the current IO line state
* and expected IO line state.
*/
static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
bool done = false;
u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
struct mmc_host *mmc = host->mmc;
pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
mmc_hostname(host->mmc), __func__, req_type,
msm_host->curr_pwr_state, msm_host->curr_io_level);
sdhci_msm_log_str(msm_host, "request %d curr_pwr_state %x curr_io_level %x\n",
req_type, msm_host->curr_pwr_state,
msm_host->curr_io_level);
/*
* The power interrupt will not be generated for signal voltage
* switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
* Since sdhci-msm-v5, this bit has been removed and SW must consider
* it as always set.
*/
if (!msm_host->mci_removed)
val = msm_host_readl(msm_host, host,
msm_offset->core_generics);
if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
!(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
return;
}
/*
* The IRQ for request type IO High/LOW will be generated when -
* there is a state change in 1.8V enable bit (bit 3) of
* SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
* which indicates 3.3V IO voltage. So, when MMC core layer tries
* to set it to 3.3V before card detection happens, the
* IRQ doesn't get triggered as there is no state change in this bit.
* The driver already handles this case by changing the IO voltage
* level to high as part of controller power up sequence. Hence, check
* for host->pwr to handle a case where IO voltage high request is
* issued even before controller power up.
*/
if ((req_type & REQ_IO_HIGH) && !host->pwr) {
pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
mmc_hostname(host->mmc), req_type);
return;
}
if ((req_type & msm_host->curr_pwr_state) ||
(req_type & msm_host->curr_io_level))
done = true;
/*
* This is needed here to handle cases where register writes will
* not change the current bus state or io level of the controller.
* In this case, no power irq will be triggerred and we should
* not wait.
*/
if (!done) {
if (!wait_event_timeout(msm_host->pwr_irq_wait,
msm_host->pwr_irq_flag,
msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS))) {
dev_warn(&msm_host->pdev->dev,
"%s: pwr_irq for req: (%d) timed out\n",
mmc_hostname(host->mmc), req_type);
sdhci_msm_dump_pwr_ctrl_regs(host);
}
}
if (mmc->card && mmc->ops->get_cd && !mmc->ops->get_cd(mmc) &&
(req_type & REQ_BUS_ON)) {
host->pwr = 0;
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
}
pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
__func__, req_type);
sdhci_msm_log_str(msm_host, "request %d done\n", req_type);
}
/*
* sdhci_msm_enhanced_strobe_mask :-
* Before running CMDQ transfers in HS400 Enhanced Strobe mode,
* SW should write 3 to
* HC_VENDOR_SPECIFIC_FUNC3.CMDEN_HS400_INPUT_MASK_CNT register.
* The default reset value of this register is 2.
*/
static void sdhci_msm_enhanced_strobe_mask(struct mmc_host *mmc, bool set)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
u32 config;
if (!mmc->ios.enhanced_strobe) {
pr_debug("%s: host/card does not support hs400 enhanced strobe\n",
mmc_hostname(host->mmc));
return;
}
config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3);
if (set)
config |= CORE_CMDEN_HS400_INPUT_MASK_CNT;
else
config &= ~CORE_CMDEN_HS400_INPUT_MASK_CNT;
writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec3);
}
static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset =
msm_host->offset;
pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
mmc_hostname(host->mmc),
msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
}
static int sdhci_msm_clear_pwrctl_status(struct sdhci_host *host, u32 value)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
int ret = 0, retry = 10;
/*
* There is a rare HW scenario where the first clear pulse could be
* lost when actual reset and clear/read of status register is
* happening at a time. Hence, retry for at least 10 times to make
* sure status register is cleared. Otherwise, this will result in
* a spurious power IRQ resulting in system instability.
*/
do {
if (retry == 0) {
pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
mmc_hostname(host->mmc), value);
sdhci_msm_dump_pwr_ctrl_regs(host);
WARN_ON(1);
ret = -EBUSY;
break;
}
/*
* Clear the PWRCTL_STATUS interrupt bits by writing to the
* corresponding bits in the PWRCTL_CLEAR register.
*/
msm_host_writel(msm_host, value, host,
msm_offset->core_pwrctl_clear);
/*
* SDHC has core_mem and hc_mem device memory and these memory
* addresses do not fall within 1KB region. Hence, any update to
* core_mem address space would require an mb() to ensure this
* gets completed before its next update to registers within
* hc_mem.
*/
mb();
retry--;
udelay(10);
} while (value & msm_host_readl(msm_host, host,
msm_offset->core_pwrctl_status));
return ret;
}
/* Regulator utility functions */
static int sdhci_msm_vreg_init_reg(struct device *dev,
struct sdhci_msm_reg_data *vreg)
{
int ret = 0;
/* check if regulator is already initialized? */
if (vreg->reg)
goto out;
/* Get the regulator handle */
vreg->reg = devm_regulator_get(dev, vreg->name);
if (IS_ERR(vreg->reg)) {
ret = PTR_ERR(vreg->reg);
pr_err("%s: devm_regulator_get(%s) failed. ret=%d\n",
__func__, vreg->name, ret);
goto out;
}
if (regulator_count_voltages(vreg->reg) > 0) {
vreg->set_voltage_sup = true;
/* sanity check */
if ((vreg->is_voltage_supplied && !vreg->high_vol_level) ||
!vreg->hpm_uA) {
pr_err("%s: %s invalid constraints specified\n",
__func__, vreg->name);
ret = -EINVAL;
}
}
out:
return ret;
}
static int sdhci_msm_vreg_set_optimum_mode(struct sdhci_msm_reg_data
*vreg, int uA_load)
{
int ret = 0;
sdhci_msm_log_str(vreg->msm_host, "reg=%s uA_load=%d\n",
vreg->name, uA_load);
/*
* regulators that do not support regulator_set_voltage also
* do not support regulator_set_optimum_mode
*/
if (vreg->set_voltage_sup) {
ret = regulator_set_load(vreg->reg, uA_load);
if (ret < 0)
pr_err("%s: regulator_set_load(reg=%s,uA_load=%d) failed. ret=%d\n",
__func__, vreg->name, uA_load, ret);
else
/*
* regulator_set_load() can return non zero
* value even for success case.
*/
ret = 0;
}
return ret;
}
static int sdhci_msm_vreg_set_voltage(struct sdhci_msm_reg_data *vreg,
int min_uV, int max_uV)
{
int ret = 0;
sdhci_msm_log_str(vreg->msm_host, "reg=%s min_uV=%d max_uV=%d\n",
vreg->name, min_uV, max_uV);
if (vreg->set_voltage_sup && vreg->is_voltage_supplied) {
ret = regulator_set_voltage(vreg->reg, min_uV, max_uV);
if (ret) {
pr_err("%s: regulator_set_voltage(%s)failed. min_uV=%d,max_uV=%d,ret=%d\n",
__func__, vreg->name, min_uV, max_uV, ret);
}
}
return ret;
}
static int sdhci_msm_vreg_enable(struct sdhci_msm_reg_data *vreg)
{
int ret = 0;
/* Put regulator in HPM (high power mode) */
ret = sdhci_msm_vreg_set_optimum_mode(vreg, vreg->hpm_uA);
if (ret < 0)
return ret;
if (!vreg->is_enabled) {
/* Set voltage level */
ret = sdhci_msm_vreg_set_voltage(vreg, vreg->high_vol_level,
vreg->high_vol_level);
if (ret)
return ret;
}
ret = regulator_enable(vreg->reg);
if (ret) {
pr_err("%s: regulator_enable(%s) failed. ret=%d\n",
__func__, vreg->name, ret);
return ret;
}
vreg->is_enabled = true;
return ret;
}
static int sdhci_msm_vreg_disable(struct sdhci_msm_reg_data *vreg)
{
int ret = 0;
/* Never disable regulator marked as always_on */
if (vreg->is_enabled && !vreg->is_always_on) {
ret = regulator_disable(vreg->reg);
if (ret) {
pr_err("%s: regulator_disable(%s) failed. ret=%d\n",
__func__, vreg->name, ret);
goto out;
}
vreg->is_enabled = false;
ret = sdhci_msm_vreg_set_optimum_mode(vreg, 0);
if (ret < 0)
goto out;
/* Set min. voltage level to 0 */
ret = sdhci_msm_vreg_set_voltage(vreg, 0, vreg->high_vol_level);
if (ret)
goto out;
} else if (vreg->is_enabled && vreg->is_always_on) {
if (vreg->lpm_sup) {
/* Put always_on regulator in LPM (low power mode) */
ret = sdhci_msm_vreg_set_optimum_mode(vreg,
vreg->lpm_uA);
if (ret < 0)
goto out;
}
}
out:
return ret;
}
static int sdhci_msm_setup_vreg(struct sdhci_msm_host *msm_host,
bool enable, bool is_init)
{
int ret = 0, i;
struct sdhci_msm_vreg_data *curr_slot;
struct sdhci_msm_reg_data *vreg_table[2];
struct mmc_host *mmc = msm_host->mmc;
u32 val = 0;
sdhci_msm_log_str(msm_host, "%s regulators\n",
enable ? "Enabling" : "Disabling");
curr_slot = msm_host->vreg_data;
if (!curr_slot) {
pr_debug("%s: vreg info unavailable,assuming the slot is powered by always on domain\n",
__func__);
goto out;
}
vreg_table[0] = curr_slot->vdd_data;
vreg_table[1] = curr_slot->vdd_io_data;
/* When eMMC absent disable regulator marked as always_on */
if (!enable && vreg_table[1]->is_always_on && !mmc->card)
vreg_table[1]->is_always_on = false;
/* Disable always_on regulator during reboot/shutdown */
if (mmc->card &&
mmc->card->ext_csd.power_off_notification == EXT_CSD_NO_POWER_NOTIFICATION
&& mmc->caps & MMC_CAP_NONREMOVABLE)
return ret;
if (!enable && !(mmc->caps & MMC_CAP_NONREMOVABLE)) {
/*
* Disable Receiver of the Pad to avoid crowbar currents
* when Pad power supplies are collapsed. Provide SW control
* on the core_ie of SDC2 Pads. SW write 1b0
* into the bit 15 of register TLMM_NORTH_SPARE.
*/
val = msm_spare_read(TLMM_NORTH_SPARE);
val &= ~TLMM_NORTH_SPARE_CORE_IE;
msm_spare_write(TLMM_NORTH_SPARE, val);
}
for (i = 0; i < ARRAY_SIZE(vreg_table); i++) {
if (vreg_table[i]) {
if (enable)
ret = sdhci_msm_vreg_enable(vreg_table[i]);
else
ret = sdhci_msm_vreg_disable(vreg_table[i]);
if (ret)
goto out;
}
}
if (enable && !(mmc->caps & MMC_CAP_NONREMOVABLE)) {
/*
* Disable Receiver of the Pad to avoid crowbar currents
* when Pad power supplies are collapsed. Provide SW control
* on the core_ie of SDC2 Pads. SW write 1b1
* into the bit 15 of register TLMM_NORTH_SPARE.
*/
val = msm_spare_read(TLMM_NORTH_SPARE);
val |= TLMM_NORTH_SPARE_CORE_IE;
msm_spare_write(TLMM_NORTH_SPARE, val);
}
out:
return ret;
}
/* This init function should be called only once for each SDHC slot */
static int sdhci_msm_vreg_init(struct device *dev,
struct sdhci_msm_host *msm_host,
bool is_init)
{
int ret = 0;
struct sdhci_msm_vreg_data *curr_slot;
struct sdhci_msm_reg_data *curr_vdd_reg, *curr_vdd_io_reg;
struct mmc_host *mmc = msm_host->mmc;
struct sdhci_host *host = mmc_priv(mmc);
curr_slot = msm_host->vreg_data;
if (!curr_slot)
goto out;
curr_vdd_reg = curr_slot->vdd_data;
curr_vdd_io_reg = curr_slot->vdd_io_data;
if (!is_init)
/* Deregister all regulators from regulator framework */
goto out;
/*
* Get the regulator handle from voltage regulator framework
* and then try to set the voltage level for the regulator
*/
if (curr_vdd_reg) {
ret = sdhci_msm_vreg_init_reg(dev, curr_vdd_reg);
if (ret)
goto out;
}
if (curr_vdd_io_reg) {
ret = sdhci_msm_vreg_init_reg(dev, curr_vdd_io_reg);
/* In eMMC case vdd-io might be a fixed 1.8V regulator */
if (mmc->caps & MMC_CAP_NONREMOVABLE &&
!regulator_is_supported_voltage(curr_vdd_io_reg->reg,
2700000, 3600000))
host->flags &= ~SDHCI_SIGNALING_330;
}
out:
if (ret)
dev_err(dev, "vreg reset failed (%d)\n", ret);
return ret;
}
static int sdhci_msm_set_vdd_io_vol(struct sdhci_msm_host *msm_host,
enum vdd_io_level level,
unsigned int voltage_level)
{
int ret = 0;
int set_level;
struct sdhci_msm_reg_data *vdd_io_reg;
if (!msm_host->vreg_data)
return ret;
vdd_io_reg = msm_host->vreg_data->vdd_io_data;
if (vdd_io_reg && vdd_io_reg->is_enabled) {
switch (level) {
case VDD_IO_LOW:
set_level = vdd_io_reg->low_vol_level;
break;
case VDD_IO_HIGH:
set_level = vdd_io_reg->high_vol_level;
break;
case VDD_IO_SET_LEVEL:
set_level = voltage_level;
break;
default:
pr_err("%s: invalid argument level = %d\n",
__func__, level);
ret = -EINVAL;
return ret;
}
ret = sdhci_msm_vreg_set_voltage(vdd_io_reg, set_level,
set_level);
}
return ret;
}
static void sdhci_msm_vbias_bypass_wa(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_host_offset =
msm_host->offset;
struct mmc_host *mmc = host->mmc;
u32 config;
int card_detect = 0;
if (mmc->ops->get_cd)
card_detect = mmc->ops->get_cd(mmc);
config = readl_relaxed(host->ioaddr +
msm_host_offset->core_vendor_spec);
/*
* Following cases are covered.
* 1. Card Probe
* 2. Card suspend
* 3. Card Resume
* 4. Card remove
*/
if ((mmc->card == NULL) && card_detect &&
(mmc->ios.power_mode == MMC_POWER_UP))
config &= ~CORE_IO_PAD_PWR_SWITCH;
else if (mmc->card && card_detect &&
(mmc->ios.power_mode == MMC_POWER_OFF))
config |= CORE_IO_PAD_PWR_SWITCH;
else if (mmc->card && card_detect &&
(mmc->ios.power_mode == MMC_POWER_UP))
config &= ~CORE_IO_PAD_PWR_SWITCH;
else if (mmc->card == NULL && !card_detect &&
(mmc->ios.power_mode == MMC_POWER_OFF))
config |= CORE_IO_PAD_PWR_SWITCH;
writel_relaxed(config, host->ioaddr +
msm_host_offset->core_vendor_spec);
}
static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct mmc_host *mmc = host->mmc;
u32 irq_status, irq_ack = 0;
int retry = 10, ret = 0;
u32 pwr_state = 0, io_level = 0;
u32 config;
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
irq_status = msm_host_readl(msm_host, host,
msm_offset->core_pwrctl_status);
irq_status &= INT_MASK;
sdhci_msm_log_str(msm_host, "Received IRQ(%d), irq_status=0x%x\n",
irq, irq_status);
msm_host_writel(msm_host, irq_status, host,
msm_offset->core_pwrctl_clear);
/*
* There is a rare HW scenario where the first clear pulse could be
* lost when actual reset and clear/read of status register is
* happening at a time. Hence, retry for at least 10 times to make
* sure status register is cleared. Otherwise, this will result in
* a spurious power IRQ resulting in system instability.
*/
while (irq_status & msm_host_readl(msm_host, host,
msm_offset->core_pwrctl_status)) {
if (retry == 0) {
pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
mmc_hostname(host->mmc), irq_status);
sdhci_msm_dump_pwr_ctrl_regs(host);
WARN_ON(1);
break;
}
msm_host_writel(msm_host, irq_status, host,
msm_offset->core_pwrctl_clear);
retry--;
udelay(10);
}
if (mmc->card && mmc->ops->get_cd && !mmc->ops->get_cd(mmc) &&
irq_status & CORE_PWRCTL_BUS_ON) {
irq_ack = CORE_PWRCTL_BUS_FAIL;
msm_host_writel(msm_host, irq_ack, host,
msm_offset->core_pwrctl_ctl);
return;
}
/* Handle BUS ON/OFF*/
if (irq_status & CORE_PWRCTL_BUS_ON) {
ret = sdhci_msm_setup_vreg(msm_host, true, false);
if (!ret)
ret = sdhci_msm_set_vdd_io_vol(msm_host,
VDD_IO_HIGH, 0);
if (ret)
irq_ack |= CORE_PWRCTL_BUS_FAIL;
else
irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
pwr_state = REQ_BUS_ON;
io_level = REQ_IO_HIGH;
}
if (irq_status & CORE_PWRCTL_BUS_OFF) {
if (!(host->mmc->caps & MMC_CAP_NONREMOVABLE) ||
msm_host->pltfm_init_done)
ret = sdhci_msm_setup_vreg(msm_host,
false, false);
if (!ret)
ret = sdhci_msm_set_vdd_io_vol(msm_host,
VDD_IO_LOW, 0);
if (ret)
irq_ack |= CORE_PWRCTL_BUS_FAIL;
else
irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
pwr_state = REQ_BUS_OFF;
io_level = REQ_IO_LOW;
}
if (pwr_state) {
ret = sdhci_msm_set_vmmc(msm_host, mmc,
pwr_state & REQ_BUS_ON);
if (!ret)
ret = sdhci_msm_set_vqmmc(msm_host, mmc,
pwr_state & REQ_BUS_ON);
if (!ret)
ret = sdhci_msm_set_pincfg(msm_host,
pwr_state & REQ_BUS_ON);
if (!ret)
irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
else
irq_ack |= CORE_PWRCTL_BUS_FAIL;
}
/* Handle IO LOW/HIGH */
if (irq_status & CORE_PWRCTL_IO_LOW) {
io_level = REQ_IO_LOW;
/* Switch voltage low */
ret = sdhci_msm_set_vdd_io_vol(msm_host, VDD_IO_LOW, 0);
if (ret)
irq_ack |= CORE_PWRCTL_IO_FAIL;
else
irq_ack |= CORE_PWRCTL_IO_SUCCESS;
}
if (irq_status & CORE_PWRCTL_IO_HIGH) {
io_level = REQ_IO_HIGH;
/* Switch voltage high */
ret = sdhci_msm_set_vdd_io_vol(msm_host, VDD_IO_HIGH, 0);
if (ret)
irq_ack |= CORE_PWRCTL_IO_FAIL;
else
irq_ack |= CORE_PWRCTL_IO_SUCCESS;
}
if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
if (ret < 0) {
dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
mmc_hostname(mmc), ret,
mmc->ios.signal_voltage, mmc->ios.vdd,
irq_status);
irq_ack |= CORE_PWRCTL_IO_FAIL;
}
}
/*
* The driver has to acknowledge the interrupt, switch voltages and
* report back if it succeded or not to this register. The voltage
* switches are handled by the sdhci core, so just report success.
*/
msm_host_writel(msm_host, irq_ack, host,
msm_offset->core_pwrctl_ctl);
/*
* If we don't have info regarding the voltage levels supported by
* regulators, don't change the IO PAD PWR SWITCH.
*/
if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
u32 new_config;
/*
* We should unset IO PAD PWR switch only if the register write
* can set IO lines high and the regulator also switches to 3 V.
* Else, we should keep the IO PAD PWR switch set.
* This is applicable to certain targets where eMMC vccq supply
* is only 1.8V. In such targets, even during REQ_IO_HIGH, the
* IO PAD PWR switch must be kept set to reflect actual
* regulator voltage. This way, during initialization of
* controllers with only 1.8V, we will set the IO PAD bit
* without waiting for a REQ_IO_LOW.
*/
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec);
new_config = config;
if ((io_level & REQ_IO_HIGH) &&
(msm_host->caps_0 & CORE_3_0V_SUPPORT) &&
!msm_host->fake_core_3_0v_support) {
if (msm_host->vbias_skip_wa)
sdhci_msm_vbias_bypass_wa(host);
else
new_config &= ~CORE_IO_PAD_PWR_SWITCH;
} else if ((io_level & REQ_IO_LOW) ||
(msm_host->caps_0 & CORE_1_8V_SUPPORT)) {
new_config |= CORE_IO_PAD_PWR_SWITCH;
}
if (config ^ new_config)
writel_relaxed(new_config, host->ioaddr +
msm_offset->core_vendor_spec);
}
if (pwr_state)
msm_host->curr_pwr_state = pwr_state;
if (io_level)
msm_host->curr_io_level = io_level;
dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
irq_ack);
sdhci_msm_log_str(msm_host, "Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
irq, irq_status, irq_ack);
}
static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
{
struct sdhci_host *host = (struct sdhci_host *)data;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
sdhci_msm_handle_pwr_irq(host, irq);
msm_host->pwr_irq_flag = 1;
sdhci_msm_complete_pwr_irq_wait(msm_host);
return IRQ_HANDLED;
}
static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct clk *core_clk = msm_host->bulk_clks[0].clk;
return clk_round_rate(core_clk, ULONG_MAX);
}
static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
{
return SDHCI_MSM_MIN_CLOCK;
}
/*
* __sdhci_msm_set_clock - sdhci_msm clock control.
*
* Description:
* MSM controller does not use internal divider and
* instead directly control the GCC clock as per
* HW recommendation.
**/
static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
{
u16 clk;
/*
* Keep actual_clock as zero -
* - since there is no divider used so no need of having actual_clock.
* - MSM controller uses SDCLK for data timeout calculation. If
* actual_clock is zero, host->clock is taken for calculation.
*/
host->mmc->actual_clock = 0;
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
if (clock == 0)
return;
/*
* MSM controller do not use clock divider.
* Thus read SDHCI_CLOCK_CONTROL and only enable
* clock with no divider value programmed.
*/
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
sdhci_enable_clk(host, clk);
}
/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
if (!clock) {
host->mmc->actual_clock = msm_host->clk_rate = 0;
goto out;
}
sdhci_msm_hc_select_mode(host);
msm_set_clock_rate_for_bus_mode(host, clock);
out:
/* Vote on bus only with clock frequency or when changing clock
* frequency. No need to vote when setting clock frequency as 0
* because after setting clock at 0, we release host, which will
* eventually call host runtime suspend and unvoting would be
* taken care in runtime suspend call.
*/
if (!msm_host->skip_bus_bw_voting && clock)
sdhci_msm_bus_voting(host, true);
__sdhci_msm_set_clock(host, clock);
}
/*****************************************************************************\
* *
* Inline Crypto Engine (ICE) support *
* *
\*****************************************************************************/
#ifdef CONFIG_MMC_CRYPTO
#define AES_256_XTS_KEY_SIZE 64
/* QCOM ICE registers */
#define QCOM_ICE_REG_VERSION 0x0008
#define QCOM_ICE_REG_FUSE_SETTING 0x0010
#define QCOM_ICE_FUSE_SETTING_MASK 0x1
#define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK 0x2
#define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK 0x4
#define QCOM_ICE_REG_BIST_STATUS 0x0070
#define QCOM_ICE_BIST_STATUS_MASK 0xF0000000
#define QCOM_ICE_REG_ADVANCED_CONTROL 0x1000
#define sdhci_msm_ice_writel(host, val, reg) \
writel((val), (host)->ice_mem + (reg))
#define sdhci_msm_ice_readl(host, reg) \
readl((host)->ice_mem + (reg))
static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
{
struct device *dev = mmc_dev(msm_host->mmc);
u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
int major = regval >> 24;
int minor = (regval >> 16) & 0xFF;
int step = regval & 0xFFFF;
/* For now this driver only supports ICE version 3. */
if (major != 3) {
dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
major, minor, step);
return false;
}
dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
major, minor, step);
/* If fuses are blown, ICE might not work in the standard way. */
regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
return false;
}
return true;
}
static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
{
return devm_clk_get(dev, "ice");
}
static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
struct cqhci_host *cq_host)
{
struct mmc_host *mmc = msm_host->mmc;
struct device *dev = mmc_dev(mmc);
struct resource *ice_base_res;
#if (IS_ENABLED(CONFIG_QTI_HW_KEY_MANAGER) || IS_ENABLED(CONFIG_QTI_HW_KEY_MANAGER_V1))
struct resource *ice_hwkm_res;
#endif
int err;
if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
return 0;
ice_base_res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
"cqhci_ice");
if (!ice_base_res) {
dev_warn(dev, "ICE registers not found\n");
goto disable;
}
if (!qcom_scm_ice_available()) {
dev_warn(dev, "ICE SCM interface not found\n");
goto disable;
}
msm_host->ice_mem = devm_ioremap_resource(dev, ice_base_res);
if (IS_ERR(msm_host->ice_mem)) {
err = PTR_ERR(msm_host->ice_mem);
dev_err(dev, "Failed to map ICE registers; err=%d\n", err);
return err;
}
cq_host->ice_mmio = msm_host->ice_mem;
#if (IS_ENABLED(CONFIG_QTI_HW_KEY_MANAGER) || IS_ENABLED(CONFIG_QTI_HW_KEY_MANAGER_V1))
ice_hwkm_res = platform_get_resource_byname(msm_host->pdev,
IORESOURCE_MEM,
"cqhci_ice_hwkm");
if (!ice_hwkm_res) {
dev_warn(dev, "ICE HWKM registers not found\n");
goto disable;
}
msm_host->ice_hwkm_mem = devm_ioremap_resource(dev, ice_hwkm_res);
if (IS_ERR(msm_host->ice_hwkm_mem)) {
err = PTR_ERR(msm_host->ice_hwkm_mem);
dev_err(dev, "Failed to map ICE HWKM registers; err=%d\n", err);
return err;
}
cq_host->ice_hwkm_mmio = msm_host->ice_hwkm_mem;
#endif
if (!sdhci_msm_ice_supported(msm_host))
goto disable;
mmc->caps2 |= MMC_CAP2_CRYPTO;
return 0;
disable:
dev_warn(dev, "Disabling inline encryption support\n");
return 0;
}
static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
{
u32 regval;
regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
/*
* Enable low power mode sequence
* [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
*/
regval |= 0x7000;
sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
}
static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
{
u32 regval;
/* ICE Optimizations Enable Sequence */
regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
regval |= 0xD807100;
/* ICE HPG requires delay before writing */
udelay(5);
sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
udelay(5);
}
/*
* Wait until the ICE BIST (built-in self-test) has completed.
*
* This may be necessary before ICE can be used.
*
* Note that we don't really care whether the BIST passed or failed; we really
* just want to make sure that it isn't still running. This is because (a) the
* BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
* documented to reject crypto requests if the BIST fails, so we needn't do it
* in software too, and (c) properly testing storage encryption requires testing
* the full storage stack anyway, and not relying on hardware-level self-tests.
*/
static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
{
u32 regval;
int err;
err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
50, 5000);
if (err)
dev_err(mmc_dev(msm_host->mmc),
"Timed out waiting for ICE self-test to complete\n");
return err;
}
static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
{
if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
return;
sdhci_msm_ice_low_power_mode_enable(msm_host);
sdhci_msm_ice_optimization_enable(msm_host);
sdhci_msm_ice_wait_bist_status(msm_host);
}
static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
{
if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
return 0;
return sdhci_msm_ice_wait_bist_status(msm_host);
}
/*
* Program a key into a QC ICE keyslot, or evict a keyslot. QC ICE requires
* vendor-specific SCM calls for this; it doesn't support the standard way.
*/
static int sdhci_msm_program_key(struct cqhci_host *cq_host,
const union cqhci_crypto_cfg_entry *cfg,
int slot)
{
struct device *dev = mmc_dev(cq_host->mmc);
union cqhci_crypto_cap_entry cap;
union {
u8 bytes[AES_256_XTS_KEY_SIZE];
u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
} key;
int i;
int err;
if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
return qcom_scm_ice_invalidate_key(slot);
/* Only AES-256-XTS has been tested so far. */
cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
dev_err_ratelimited(dev,
"Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
cap.algorithm_id, cap.key_size);
return -EINVAL;
}
memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
/*
* The SCM call byte-swaps the 32-bit words of the key. So we have to
* do the same, in order for the final key be correct.
*/
for (i = 0; i < ARRAY_SIZE(key.words); i++)
__cpu_to_be32s(&key.words[i]);
err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
QCOM_SCM_ICE_CIPHER_AES_256_XTS,
cfg->data_unit_size);
memzero_explicit(&key, sizeof(key));
return err;
}
void sdhci_msm_ice_disable(struct sdhci_msm_host *msm_host)
{
if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
return;
#if IS_ENABLED(CONFIG_MMC_CRYPTO_QTI)
crypto_qti_disable();
#endif
}
#else /* CONFIG_MMC_CRYPTO */
static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
{
return NULL;
}
static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
struct cqhci_host *cq_host)
{
return 0;
}
static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
{
}
static inline int __maybe_unused
sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
{
return 0;
}
void sdhci_msm_ice_disable(struct sdhci_msm_host *msm_host)
{
return;
}
#endif /* !CONFIG_MMC_CRYPTO */
/*****************************************************************************\
* *
* MSM Command Queue Engine (CQE) *
* *
\*****************************************************************************/
static void sdhci_msm_log_irq(struct sdhci_host *host, u32 intmask)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
sdhci_msm_log_str(msm_host, "intmask: 0x%x\n", intmask);
}
static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
{
int cmd_error = 0;
int data_error = 0;
sdhci_msm_log_irq(host, intmask);
if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
return intmask;
cqhci_irq(host->mmc, intmask, cmd_error, data_error);
return 0;
}
static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
sdhci_cqe_enable(mmc);
sdhci_msm_ice_enable(msm_host);
}
static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
u32 ctrl;
/*
* When CQE is halted, the legacy SDHCI path operates only
* on 16-byte descriptors in 64bit mode.
*/
if (host->flags & SDHCI_USE_64_BIT_DMA)
host->desc_sz = 16;
spin_lock_irqsave(&host->lock, flags);
/*
* During CQE command transfers, command complete bit gets latched.
* So s/w should clear command complete interrupt status when CQE is
* either halted or disabled. Otherwise unexpected SDCHI legacy
* interrupt gets triggered when CQE is halted/disabled.
*/
ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
ctrl |= SDHCI_INT_RESPONSE;
sdhci_writel(host, ctrl, SDHCI_INT_ENABLE);
sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
spin_unlock_irqrestore(&host->lock, flags);
sdhci_cqe_disable(mmc, recovery);
}
static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
{
u32 count, start = 15;
/*
* Qcom SoC hardware data timeout value was calculated
* using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
*/
host->timeout_clk = host->mmc->actual_clock ?
host->mmc->actual_clock / 1000 :
host->clock / 1000;
host->timeout_clk /= 4;
__sdhci_set_timeout(host, cmd);
count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
/*
* Update software timeout value if its value is less than hardware data
* timeout value.
*/
if (cmd && cmd->data && host->clock > 400000 &&
host->clock <= 50000000 &&
((1 << (count + start)) > (10 * host->clock)))
host->data_timeout = 22LL * NSEC_PER_SEC;
}
void sdhci_msm_cqe_sdhci_dumpregs(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
sdhci_dumpregs(host);
}
static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
.enable = sdhci_msm_cqe_enable,
.disable = sdhci_msm_cqe_disable,
.enhanced_strobe_mask = sdhci_msm_enhanced_strobe_mask,
#ifdef CONFIG_MMC_CRYPTO
.program_key = sdhci_msm_program_key,
#endif
.dumpregs = sdhci_msm_cqe_sdhci_dumpregs,
};
static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
struct platform_device *pdev)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct cqhci_host *cq_host;
bool dma64;
u32 cqcfg;
int ret;
/*
* When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
* So ensure ADMA table is allocated for 16byte descriptors.
*/
if (host->caps & SDHCI_CAN_64BIT)
host->alloc_desc_sz = 16;
ret = sdhci_setup_host(host);
if (ret)
return ret;
cq_host = cqhci_pltfm_init(pdev);
if (IS_ERR(cq_host)) {
ret = PTR_ERR(cq_host);
dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
goto cleanup;
}
msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
#if IS_ENABLED(CONFIG_MMC_SDHCI_MSM_SCALING)
msm_host->scale_caps |= MMC_CAP2_CLK_SCALE;
#endif
cq_host->ops = &sdhci_msm_cqhci_ops;
msm_host->cq_host = cq_host;
cq_host->offset_changed = msm_host->cqhci_offset_changed;
dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
ret = sdhci_msm_ice_init(msm_host, cq_host);
if (ret)
goto cleanup;
ret = cqhci_init(cq_host, host->mmc, dma64);
if (ret) {
dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
mmc_hostname(host->mmc), ret);
goto cleanup;
}
/* Disable cqe reset due to cqe enable signal */
cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
/*
* SDHC expects 12byte ADMA descriptors till CQE is enabled.
* So limit desc_sz to 12 so that the data commands that are sent
* during card initialization (before CQE gets enabled) would
* get executed without any issues.
*/
if (host->flags & SDHCI_USE_64_BIT_DMA)
host->desc_sz = 12;
ret = __sdhci_add_host(host);
if (ret)
goto cleanup;
dev_info(&pdev->dev, "%s: CQE init: success\n",
mmc_hostname(host->mmc));
return ret;
cleanup:
sdhci_cleanup_host(host);
return ret;
}
static void sdhci_msm_registers_save(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
struct cqhci_host *cq_host = host->mmc->cqe_private;
if (!msm_host->regs_restore.is_supported &&
!msm_host->reg_store)
return;
msm_host->regs_restore.vendor_func = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec);
msm_host->regs_restore.vendor_pwrctl_mask =
readl_relaxed(host->ioaddr +
msm_offset->core_pwrctl_mask);
msm_host->regs_restore.vendor_func2 =
readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec_func2);
msm_host->regs_restore.vendor_func3 =
readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec3);
msm_host->regs_restore.hc_2c_2e =
sdhci_readl(host, SDHCI_CLOCK_CONTROL);
msm_host->regs_restore.hc_3c_3e =
sdhci_readl(host, SDHCI_AUTO_CMD_STATUS);
msm_host->regs_restore.vendor_pwrctl_ctl =
readl_relaxed(host->ioaddr +
msm_offset->core_pwrctl_ctl);
msm_host->regs_restore.hc_38_3a =
sdhci_readl(host, SDHCI_SIGNAL_ENABLE);
msm_host->regs_restore.hc_34_36 =
sdhci_readl(host, SDHCI_INT_ENABLE);
msm_host->regs_restore.hc_28_2a =
sdhci_readl(host, SDHCI_HOST_CONTROL);
msm_host->regs_restore.vendor_caps_0 =
readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec_capabilities0);
msm_host->regs_restore.hc_caps_1 =
sdhci_readl(host, SDHCI_CAPABILITIES_1);
msm_host->regs_restore.testbus_config = readl_relaxed(host->ioaddr +
msm_offset->core_testbus_config);
msm_host->regs_restore.dll_config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
msm_host->regs_restore.dll_config2 = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_2);
msm_host->regs_restore.dll_config = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config);
msm_host->regs_restore.dll_config3 = readl_relaxed(host->ioaddr +
msm_offset->core_dll_config_3);
msm_host->regs_restore.dll_usr_ctl = readl_relaxed(host->ioaddr +
msm_offset->core_dll_usr_ctl);
if (cq_host)
msm_host->cqe_regs.cqe_vendor_cfg1 =
cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
msm_host->regs_restore.is_valid = true;
pr_debug("%s: %s: registers saved. PWRCTL_MASK = 0x%x\n",
mmc_hostname(host->mmc), __func__,
readl_relaxed(host->ioaddr +
msm_offset->core_pwrctl_mask));
sdhci_msm_log_str(msm_host, "Registers saved\n");
}
static void sdhci_msm_registers_restore(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
u32 irq_status;
struct mmc_ios ios = host->mmc->ios;
struct cqhci_host *cq_host = host->mmc->cqe_private;
if ((!msm_host->regs_restore.is_supported ||
!msm_host->regs_restore.is_valid) &&
!msm_host->reg_store)
return;
writel_relaxed(0, host->ioaddr + msm_offset->core_pwrctl_mask);
writel_relaxed(msm_host->regs_restore.vendor_func, host->ioaddr +
msm_offset->core_vendor_spec);
writel_relaxed(msm_host->regs_restore.vendor_func2,
host->ioaddr +
msm_offset->core_vendor_spec_func2);
writel_relaxed(msm_host->regs_restore.vendor_func3,
host->ioaddr +
msm_offset->core_vendor_spec3);
sdhci_writel(host, msm_host->regs_restore.hc_2c_2e,
SDHCI_CLOCK_CONTROL);
sdhci_writel(host, msm_host->regs_restore.hc_3c_3e,
SDHCI_AUTO_CMD_STATUS);
sdhci_writel(host, msm_host->regs_restore.hc_38_3a,
SDHCI_SIGNAL_ENABLE);
sdhci_writel(host, msm_host->regs_restore.hc_34_36,
SDHCI_INT_ENABLE);
sdhci_writel(host, msm_host->regs_restore.hc_28_2a,
SDHCI_HOST_CONTROL);
writel_relaxed(msm_host->regs_restore.vendor_caps_0,
host->ioaddr +
msm_offset->core_vendor_spec_capabilities0);
sdhci_writel(host, msm_host->regs_restore.hc_caps_1,
SDHCI_CAPABILITIES_1);
writel_relaxed(msm_host->regs_restore.testbus_config, host->ioaddr +
msm_offset->core_testbus_config);
msm_host->regs_restore.is_valid = false;
/*
* Clear the PWRCTL_STATUS register.
* There is a rare HW scenario where the first clear pulse could be
* lost when actual reset and clear/read of status register is
* happening at a time. Hence, retry for at least 10 times to make
* sure status register is cleared. Otherwise, this will result in
* a spurious power IRQ resulting in system instability.
*/
irq_status = msm_host_readl(msm_host, host,
msm_offset->core_pwrctl_status);
irq_status &= INT_MASK;
sdhci_msm_clear_pwrctl_status(host, irq_status);
writel_relaxed(msm_host->regs_restore.vendor_pwrctl_ctl,
host->ioaddr + msm_offset->core_pwrctl_ctl);
writel_relaxed(msm_host->regs_restore.vendor_pwrctl_mask,
host->ioaddr + msm_offset->core_pwrctl_mask);
if (cq_host)
cqhci_writel(cq_host, msm_host->cqe_regs.cqe_vendor_cfg1 &
~CMDQ_SEND_STATUS_TRIGGER, CQHCI_VENDOR_CFG1);
if ((ios.timing == MMC_TIMING_UHS_SDR50 &&
host->flags & SDHCI_SDR50_NEEDS_TUNING) ||
(((ios.timing == MMC_TIMING_MMC_HS400) ||
(ios.timing == MMC_TIMING_MMC_HS200) ||
(ios.timing == MMC_TIMING_UHS_SDR104))
&& (ios.clock > CORE_FREQ_100MHZ))) {
writel_relaxed(msm_host->regs_restore.dll_config2,
host->ioaddr + msm_offset->core_dll_config_2);
writel_relaxed(msm_host->regs_restore.dll_config3,
host->ioaddr + msm_offset->core_dll_config_3);
writel_relaxed(msm_host->regs_restore.dll_usr_ctl,
host->ioaddr + msm_offset->core_dll_usr_ctl);
writel_relaxed(msm_host->regs_restore.dll_config &
~(CORE_DLL_RST | CORE_DLL_PDN),
host->ioaddr + msm_offset->core_dll_config);
msm_init_cm_dll(host, DLL_INIT_FROM_CX_COLLAPSE_EXIT);
msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
}
pr_debug("%s: %s: registers restored. PWRCTL_MASK = 0x%x\n",
mmc_hostname(host->mmc), __func__,
readl_relaxed(host->ioaddr +
msm_offset->core_pwrctl_mask));
sdhci_msm_log_str(msm_host, "Registers restored\n");
}
/*
* Platform specific register write functions. This is so that, if any
* register write needs to be followed up by platform specific actions,
* they can be added here. These functions can go to sleep when writes
* to certain registers are done.
* These functions are relying on sdhci_set_ios not using spinlock.
*/
static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
u32 req_type = 0;
switch (reg) {
case SDHCI_HOST_CONTROL2:
req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
REQ_IO_HIGH;
break;
case SDHCI_SOFTWARE_RESET:
if (host->pwr && (val & SDHCI_RESET_ALL))
req_type = REQ_BUS_OFF;
break;
case SDHCI_POWER_CONTROL:
req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
break;
case SDHCI_TRANSFER_MODE:
msm_host->transfer_mode = val;
break;
case SDHCI_COMMAND:
/*
* If a command does not have CRC field in its response, as per
* design, host controller shall clear the CRC error flag for
* it, which takes 3 MCLK's, i.e. 7.5us in the case of 400KHz.
* The next command, which requires CRC check to its response,
* should be sent after the CRC error flag of previous command
* gets cleaned.
*/
if ((val & SDHCI_CMD_CRC) &&
(msm_host->last_cmd & SDHCI_CMD_FLAGS_MASK) &&
!(msm_host->last_cmd & SDHCI_CMD_CRC))
udelay(8);
msm_host->last_cmd = val;
if (!msm_host->use_cdr)
break;
if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
sdhci_msm_set_cdr(host, true);
else
sdhci_msm_set_cdr(host, false);
break;
}
if (req_type) {
msm_host->pwr_irq_flag = 0;
/*
* Since this register write may trigger a power irq, ensure
* all previous register writes are complete by this point.
*/
mb();
}
return req_type;
}
/* This function may sleep*/
static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
{
u32 req_type = 0;
req_type = __sdhci_msm_check_write(host, val, reg);
writew_relaxed(val, host->ioaddr + reg);
if (req_type)
sdhci_msm_check_power_status(host, req_type);
}
/* This function may sleep*/
static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
{
u32 req_type = 0;
req_type = __sdhci_msm_check_write(host, val, reg);
writeb_relaxed(val, host->ioaddr + reg);
if (req_type)
sdhci_msm_check_power_status(host, req_type);
}
static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
{
struct mmc_host *mmc = msm_host->mmc;
struct regulator *supply = mmc->supply.vqmmc;
u32 caps = 0, config;
struct sdhci_host *host = mmc_priv(mmc);
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
if (!IS_ERR(mmc->supply.vqmmc)) {
if (regulator_is_supported_voltage(supply, 1700000, 1950000))
caps |= CORE_1_8V_SUPPORT;
if (regulator_is_supported_voltage(supply, 2700000, 3600000))
caps |= CORE_3_0V_SUPPORT;
if (!caps)
pr_warn("%s: 1.8/3V not supported for vqmmc\n",
mmc_hostname(mmc));
}
if (caps) {
/*
* Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
* bit can be used as required later on.
*/
u32 io_level = msm_host->curr_io_level;
config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec);
config |= CORE_IO_PAD_PWR_SWITCH_EN;
if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT))
config &= ~CORE_IO_PAD_PWR_SWITCH;
else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
config |= CORE_IO_PAD_PWR_SWITCH;
writel_relaxed(config,
host->ioaddr + msm_offset->core_vendor_spec);
}
msm_host->caps_0 |= caps;
pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
}
static int sdhci_msm_dt_get_array(struct device *dev, const char *prop_name,
u32 **bw_vecs, int *len, u32 size)
{
int ret = 0;
struct device_node *np = dev->of_node;
size_t sz;
u32 *arr = NULL;
if (!of_get_property(np, prop_name, len)) {
ret = -EINVAL;
goto out;
}
sz = *len = *len / sizeof(*arr);
if (sz <= 0 || (size > 0 && (sz > size))) {
dev_err(dev, "%s invalid size\n", prop_name);
ret = -EINVAL;
goto out;
}
arr = devm_kzalloc(dev, sz * sizeof(*arr), GFP_KERNEL);
if (!arr) {
ret = -ENOMEM;
goto out;
}
ret = of_property_read_u32_array(np, prop_name, arr, sz);
if (ret < 0) {
dev_err(dev, "%s failed reading array %d\n", prop_name, ret);
goto out;
}
*bw_vecs = arr;
out:
if (ret)
*len = 0;
return ret;
}
/* Returns required bandwidth in Bytes per Sec */
static unsigned long sdhci_get_bw_required(struct sdhci_host *host,
struct mmc_ios *ios)
{
unsigned long bw;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
bw = msm_host->clk_rate;
if (ios->bus_width == MMC_BUS_WIDTH_4)
bw /= 2;
else if (ios->bus_width == MMC_BUS_WIDTH_1)
bw /= 8;
return bw;
}
static int sdhci_msm_bus_get_vote_for_bw(struct sdhci_msm_host *host,
unsigned int bw)
{
struct sdhci_msm_bus_vote_data *bvd = host->bus_vote_data;
const unsigned int *table = bvd->bw_vecs;
unsigned int size = bvd->bw_vecs_size;
int i;
for (i = 0; i < size; i++) {
if (bw <= table[i])
return i;
}
return i - 1;
}
/*
* Caller of this function should ensure that msm bus client
* handle is not null.
*/
static inline int sdhci_msm_bus_set_vote(struct sdhci_msm_host *msm_host,
int vote)
{
struct sdhci_host *host = platform_get_drvdata(msm_host->pdev);
struct sdhci_msm_bus_vote_data *bvd = msm_host->bus_vote_data;
struct msm_bus_path *usecase = bvd->usecase;
struct msm_bus_vectors *vec = usecase[vote].vec;
int ddr_rc = 0, cpu_rc = 0;
if (vote == bvd->curr_vote)
return 0;
pr_debug("%s: vote:%d sdhc_ddr ab:%llu ib:%llu cpu_sdhc ab:%llu ib:%llu\n",
mmc_hostname(host->mmc), vote, vec[0].ab,
vec[0].ib, vec[1].ab, vec[1].ib);
if (bvd->sdhc_ddr)
ddr_rc = icc_set_bw(bvd->sdhc_ddr, vec[0].ab, vec[0].ib);
if (bvd->cpu_sdhc)
cpu_rc = icc_set_bw(bvd->cpu_sdhc, vec[1].ab, vec[1].ib);
if (ddr_rc || cpu_rc) {
pr_err("%s: icc_set() failed\n",
mmc_hostname(host->mmc));
goto out;
}
bvd->curr_vote = vote;
out:
return cpu_rc;
}
/*
* This function cancels any scheduled delayed work and sets the bus
* vote based on bw (bandwidth) argument.
*/
static void sdhci_msm_bus_get_and_set_vote(struct sdhci_host *host,
unsigned int bw)
{
int vote;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
if (!msm_host->bus_vote_data ||
(!msm_host->bus_vote_data->sdhc_ddr &&
!msm_host->bus_vote_data->cpu_sdhc))
return;
vote = sdhci_msm_bus_get_vote_for_bw(msm_host, bw);
sdhci_msm_bus_set_vote(msm_host, vote);
}
static struct sdhci_msm_bus_vote_data *sdhci_msm_get_bus_vote_data(struct device
*dev, struct sdhci_msm_host *host)
{
struct platform_device *pdev = to_platform_device(dev);
struct device_node *of_node = dev->of_node;
struct sdhci_msm_bus_vote_data *bvd = NULL;
struct msm_bus_path *usecase = NULL;
int ret = 0, i = 0, j, num_paths, len;
const u32 *vec_arr = NULL;
if (!pdev) {
dev_err(dev, "Null platform device!\n");
return NULL;
}
bvd = devm_kzalloc(dev, sizeof(*bvd), GFP_KERNEL);
if (!bvd)
return bvd;
ret = sdhci_msm_dt_get_array(dev, "qcom,bus-bw-vectors-bps",
&bvd->bw_vecs, &bvd->bw_vecs_size, 0);
if (ret) {
if (ret == -EINVAL) {
dev_dbg(dev, "No dt property of bus bw. voting defined!\n");
dev_dbg(dev, "Skipping Bus BW voting now!!\n");
host->skip_bus_bw_voting = true;
}
goto out;
}
ret = of_property_read_string(of_node, "qcom,msm-bus,name",
&bvd->name);
if (ret) {
dev_err(dev, "Bus name missing err:(%d)\n", ret);
goto out;
}
ret = of_property_read_u32(of_node, "qcom,msm-bus,num-cases",
&bvd->num_usecase);
if (ret) {
dev_err(dev, "num-usecases not found err:(%d)\n", ret);
goto out;
}
usecase = devm_kzalloc(dev, (sizeof(struct msm_bus_path) *
bvd->num_usecase), GFP_KERNEL);
if (!usecase)
goto out;
ret = of_property_read_u32(of_node, "qcom,msm-bus,num-paths",
&num_paths);
if (ret) {
dev_err(dev, "num_paths not found err:(%d)\n", ret);
goto out;
}
vec_arr = of_get_property(of_node, "qcom,msm-bus,vectors-KBps", &len);
if (!vec_arr) {
dev_err(dev, "Vector array not found\n");
goto out;
}
for (i = 0; i < bvd->num_usecase; i++) {
usecase[i].num_paths = num_paths;
usecase[i].vec = devm_kcalloc(dev, num_paths,
sizeof(struct msm_bus_vectors),
GFP_KERNEL);
if (!usecase[i].vec)
goto out;
for (j = 0; j < num_paths; j++) {
int idx = ((i * num_paths) + j) * 2;
usecase[i].vec[j].ab = (u64)
be32_to_cpu(vec_arr[idx]);
usecase[i].vec[j].ib = (u64)
be32_to_cpu(vec_arr[idx + 1]);
}
}
bvd->usecase = usecase;
return bvd;
out:
bvd = NULL;
return bvd;
}
static int sdhci_msm_bus_register(struct sdhci_msm_host *host,
struct platform_device *pdev)
{
struct sdhci_msm_bus_vote_data *bsd;
struct device *dev = &pdev->dev;
int ret = 0;
bsd = sdhci_msm_get_bus_vote_data(dev, host);
if (!bsd) {
dev_err(&pdev->dev, "Failed to get bus_scale data\n");
return -EINVAL;
}
host->bus_vote_data = bsd;
bsd->sdhc_ddr = of_icc_get(&pdev->dev, "sdhc-ddr");
if (IS_ERR_OR_NULL(bsd->sdhc_ddr)) {
dev_info(&pdev->dev, "(%ld): failed getting %s path\n",
PTR_ERR(bsd->sdhc_ddr), "sdhc-ddr");
bsd->sdhc_ddr = NULL;
}
bsd->cpu_sdhc = of_icc_get(&pdev->dev, "cpu-sdhc");
if (IS_ERR_OR_NULL(bsd->cpu_sdhc)) {
dev_info(&pdev->dev, "(%ld): failed getting %s path\n",
PTR_ERR(bsd->cpu_sdhc), "cpu-sdhc");
bsd->cpu_sdhc = NULL;
}
return ret;
}
static void sdhci_msm_bus_unregister(struct device *dev,
struct sdhci_msm_host *host)
{
struct sdhci_msm_bus_vote_data *bsd = host->bus_vote_data;
if (bsd->sdhc_ddr)
icc_put(bsd->sdhc_ddr);
if (bsd->cpu_sdhc)
icc_put(bsd->cpu_sdhc);
}
static void sdhci_msm_bus_voting(struct sdhci_host *host, bool enable)
{
struct mmc_ios *ios = &host->mmc->ios;
unsigned int bw;
if (enable) {
bw = sdhci_get_bw_required(host, ios);
sdhci_msm_bus_get_and_set_vote(host, bw);
} else
sdhci_msm_bus_get_and_set_vote(host, 0);
}
static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
cqhci_deactivate(host->mmc);
if (msm_host->rst_n_disable && host->mmc && host->mmc->card &&
host->mmc->card->ext_csd.rst_n_function != EXT_CSD_RST_N_ENABLED)
host->mmc->card->ext_csd.rst_n_function = true;
sdhci_reset(host, mask);
}
static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
{
int ret;
ret = mmc_regulator_get_supply(msm_host->mmc);
if (ret)
return ret;
sdhci_msm_set_regulator_caps(msm_host);
return 0;
}
static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
u16 ctrl, status;
/*
* Signal Voltage Switching is only applicable for Host Controllers
* v3.00 and above.
*/
if (host->version < SDHCI_SPEC_300)
return 0;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
if (!(host->flags & SDHCI_SIGNALING_330))
return -EINVAL;
/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
ctrl &= ~SDHCI_CTRL_VDD_180;
break;
case MMC_SIGNAL_VOLTAGE_180:
if (!(host->flags & SDHCI_SIGNALING_180))
return -EINVAL;
/* Enable 1.8V Signal Enable in the Host Control2 register */
ctrl |= SDHCI_CTRL_VDD_180;
break;
default:
return -EINVAL;
}
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/* Wait for 5ms */
usleep_range(5000, 5500);
/* regulator output should be stable within 5 ms */
status = ctrl & SDHCI_CTRL_VDD_180;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if ((ctrl & SDHCI_CTRL_VDD_180) == status)
return 0;
dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
mmc_hostname(mmc));
return -EAGAIN;
}
static void sdhci_msm_init_card(struct mmc_host *host,
struct mmc_card *card)
{
int ret;
if (mmc_card_sdio(card)) {
ret = device_init_wakeup(&card->dev, true);
if (ret)
pr_err("%s: %s: failed to init wakeup: %d\n",
mmc_hostname(card->host), __func__, ret);
}
}
#define MAX_TEST_BUS 60
#define DRIVER_NAME "sdhci_msm"
#define SDHCI_MSM_DUMP(f, x...) \
pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
#define DRV_NAME "cqhci-host"
static void sdhci_msm_cqe_dump_debug_ram(struct sdhci_host *host)
{
int i = 0;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
struct cqhci_host *cq_host;
u32 version;
u16 minor;
int offset;
if (msm_host->cq_host)
cq_host = msm_host->cq_host;
else
return;
version = msm_host_readl(msm_host, host,
msm_offset->core_mci_version);
minor = version & CORE_VERSION_TARGET_MASK;
/* registers offset changed starting from 4.2.0 */
offset = minor >= SDHCI_MSM_VER_420 ? 0 : 0x48;
if (cq_host->offset_changed)
offset += CQE_V5_VENDOR_CFG;
pr_err("---- Debug RAM dump ----\n");
pr_err(DRV_NAME ": Debug RAM wrap-around: 0x%08x | Debug RAM overlap: 0x%08x\n",
cqhci_readl(cq_host, CQ_CMD_DBG_RAM_WA + offset),
cqhci_readl(cq_host, CQ_CMD_DBG_RAM_OL + offset));
while (i < 16) {
pr_err(DRV_NAME ": Debug RAM dump [%d]: 0x%08x\n", i,
cqhci_readl(cq_host, CQ_CMD_DBG_RAM + offset + (4 * i)));
i++;
}
pr_err("-------------------------\n");
}
static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
int tbsel, tbsel2;
int i, index = 0;
u32 test_bus_val = 0;
u32 debug_reg[MAX_TEST_BUS] = {0};
SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
if (msm_host->cq_host)
sdhci_msm_cqe_dump_debug_ram(host);
SDHCI_MSM_DUMP(
"Data cnt: 0x%08x | Fifo cnt: 0x%08x | Int sts: 0x%08x\n",
readl_relaxed(host->ioaddr + msm_offset->core_mci_data_cnt),
readl_relaxed(host->ioaddr + msm_offset->core_mci_fifo_cnt),
readl_relaxed(host->ioaddr + msm_offset->core_mci_status));
SDHCI_MSM_DUMP(
"DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n",
readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
SDHCI_MSM_DUMP(
"DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n",
readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
SDHCI_MSM_DUMP(
"SDCC ver: 0x%08x | Vndr adma err : addr0: 0x%08x addr1: 0x%08x\n",
readl_relaxed(host->ioaddr + msm_offset->core_mci_version),
readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec_adma_err_addr0),
readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec_adma_err_addr1));
SDHCI_MSM_DUMP(
"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec_func2),
readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
sdhci_msm_dump_pwr_ctrl_regs(host);
/*
* tbsel indicates [2:0] bits and tbsel2 indicates [7:4] bits
* of core_testbus_config register.
*
* To select test bus 0 to 7 use tbsel and to select any test bus
* above 7 use (tbsel2 | tbsel) to get the test bus number. For eg,
* to select test bus 14, write 0x1E to core_testbus_config register
* i.e., tbsel2[7:4] = 0001, tbsel[2:0] = 110.
*/
for (tbsel2 = 0; tbsel2 < 7; tbsel2++) {
for (tbsel = 0; tbsel < 8; tbsel++) {
if (index >= MAX_TEST_BUS)
break;
test_bus_val =
(tbsel2 << msm_offset->core_testbus_sel2_bit) |
tbsel | msm_offset->core_testbus_ena;
writel_relaxed(test_bus_val, host->ioaddr +
msm_offset->core_testbus_config);
debug_reg[index++] = readl_relaxed(host->ioaddr +
msm_offset->core_sdcc_debug_reg);
}
}
for (i = 0; i < MAX_TEST_BUS; i = i + 4)
SDHCI_MSM_DUMP(
" Test bus[%d to %d]: 0x%08x 0x%08x 0x%08x 0x%08x\n",
i, i + 3, debug_reg[i], debug_reg[i+1],
debug_reg[i+2], debug_reg[i+3]);
msm_host->dbg_en = false;
}
static const struct sdhci_msm_variant_ops mci_var_ops = {
.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
};
static const struct sdhci_msm_variant_ops v5_var_ops = {
.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
};
static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
.var_ops = &mci_var_ops,
.offset = &sdhci_msm_mci_offset,
};
static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
.mci_removed = true,
.var_ops = &v5_var_ops,
.offset = &sdhci_msm_v5_offset,
};
static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
.mci_removed = true,
.restore_dll_config = true,
.var_ops = &v5_var_ops,
.offset = &sdhci_msm_v5_offset,
};
static const struct of_device_id sdhci_msm_dt_match[] = {
{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
{.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
{},
};
MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct reset_control *reset = msm_host->core_reset;
int ret = -EOPNOTSUPP;
if (!reset)
return dev_err_probe(dev, ret, "unable to acquire core_reset\n");
ret = reset_control_assert(reset);
if (ret)
return dev_err_probe(dev, ret, "core_reset assert failed\n");
/*
* The hardware requirement for delay between assert/deassert
* is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
* ~125us (4/32768). To be on the safe side add 200us delay.
*/
usleep_range(200, 210);
ret = reset_control_deassert(reset);
if (ret)
return dev_err_probe(dev, ret, "core_reset deassert failed\n");
usleep_range(200, 210);
return ret;
}
static void sdhci_msm_hw_reset(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct platform_device *pdev = msm_host->pdev;
int ret = -EOPNOTSUPP;
if (!msm_host->core_reset) {
dev_err(&pdev->dev, "%s: failed, err = %d\n", __func__,
ret);
return;
}
msm_host->reg_store = true;
sdhci_msm_registers_save(host);
if ((host->mmc->caps2 & MMC_CAP2_CQE) && !pm_suspend_via_firmware()) {
host->mmc->cqe_ops->cqe_disable(host->mmc);
host->mmc->cqe_enabled = false;
}
sdhci_msm_gcc_reset(&pdev->dev, host);
sdhci_msm_registers_restore(host);
msm_host->reg_store = false;
sdhci_msm_log_str(msm_host, "HW reset done\n");
#if defined(CONFIG_SDC_QTI)
if (host->mmc->card && !pm_suspend_via_firmware())
mmc_power_cycle(host->mmc, host->mmc->card->ocr);
#endif
return;
}
static const struct sdhci_ops sdhci_msm_ops = {
.reset = sdhci_msm_reset,
.set_clock = sdhci_msm_set_clock,
.get_min_clock = sdhci_msm_get_min_clock,
.get_max_clock = sdhci_msm_get_max_clock,
.set_bus_width = sdhci_set_bus_width,
.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
.get_max_timeout_count = sdhci_msm_get_max_timeout_count,
.write_w = sdhci_msm_writew,
.write_b = sdhci_msm_writeb,
.irq = sdhci_msm_cqe_irq,
.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
.set_power = sdhci_set_power_noreg,
.hw_reset = sdhci_msm_hw_reset,
.set_timeout = sdhci_msm_set_timeout,
};
#if IS_ENABLED(CONFIG_MMC_SDHCI_MSM_SCALING)
void sdhci_msm_disable_scaling(struct mmc_host *mhost)
{
struct sdhci_host *shost = mmc_priv(mhost);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(shost);
struct sdhci_msm_host *host = sdhci_pltfm_priv(pltfm_host);
sdhci_msm_mmc_suspend_clk_scaling(mhost);
host->scaling_suspended = 1;
}
#endif
static const struct sdhci_pltfm_data sdhci_msm_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12 |
SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC |
SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
.ops = &sdhci_msm_ops,
};
static void sdhci_set_default_hw_caps(struct sdhci_msm_host *msm_host,
struct sdhci_host *host)
{
u32 version, caps = 0;
u16 minor;
u8 major;
const struct sdhci_msm_offset *msm_offset =
sdhci_priv_msm_offset(host);
version = msm_host_readl(msm_host, host,
msm_offset->core_mci_version);
major = (version & CORE_VERSION_MAJOR_MASK) >>
CORE_VERSION_MAJOR_SHIFT;
minor = version & CORE_VERSION_TARGET_MASK;
caps = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
/*
* SDCC 5 controller with major version 1, minor version 0x34 and later
* with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
*/
if ((major == 1) && (minor < 0x34))
msm_host->use_cdclp533 = true;
if (major == 1 && minor >= 0x42)
msm_host->use_14lpp_dll_reset = true;
/* Fake 3.0V support for SDIO devices which requires such voltage */
if (msm_host->fake_core_3_0v_support) {
caps |= CORE_3_0V_SUPPORT;
writel_relaxed((readl_relaxed(host->ioaddr +
SDHCI_CAPABILITIES) | caps), host->ioaddr +
msm_offset->core_vendor_spec_capabilities0);
}
writel_relaxed(caps, host->ioaddr +
msm_offset->core_vendor_spec_capabilities0);
/* keep track of the value in SDHCI_CAPABILITIES */
msm_host->caps_0 = caps;
/* 7FF projects with 7nm DLL */
if ((major == 1) && ((minor == 0x6e) || (minor == 0x71) ||
(minor == 0x72)))
msm_host->use_7nm_dll = true;
}
static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
struct sdhci_host *host)
{
struct device_node *node = pdev->dev.of_node;
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
if (of_property_read_u32(node, "qcom,ddr-config",
&msm_host->ddr_config))
msm_host->ddr_config = DDR_CONFIG_POR_VAL;
of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
if (of_device_is_compatible(node, "qcom,msm8916-sdhci"))
host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA;
}
static void sdhci_msm_clkgate_bus_delayed_work(struct work_struct *work)
{
struct sdhci_msm_host *msm_host = container_of(work,
struct sdhci_msm_host, clk_gating_work.work);
struct sdhci_host *host = mmc_priv(msm_host->mmc);
sdhci_msm_registers_save(host);
dev_pm_opp_set_rate(&msm_host->pdev->dev, 0);
clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
sdhci_msm_log_str(msm_host, "Clocks gated\n");
sdhci_msm_bus_voting(host, false);
}
/* Find cpu group qos from a given cpu */
static struct qos_cpu_group *cpu_to_group(struct sdhci_msm_qos_req *r, int cpu)
{
int i;
struct qos_cpu_group *g = r->qcg;
if (cpu < 0 || cpu > num_possible_cpus())
return NULL;
for (i = 0; i < r->num_groups; i++, g++) {
if (cpumask_test_cpu(cpu, &g->mask))
return &r->qcg[i];
}
return NULL;
}
/*
* Function to put qos vote. This takes qos cpu group of
* host and type of vote as input
*/
static int sdhci_msm_update_qos_constraints(struct qos_cpu_group *qcg,
enum constraint type)
{
unsigned int vote;
int cpu, err;
struct dev_pm_qos_request *qos_req = qcg->qos_req;
if (type == QOS_MAX)
vote = S32_MAX;
else
vote = qcg->votes[type];
if (qcg->curr_vote == vote)
return 0;
sdhci_msm_log_str(qcg->host, "mask: 0x%08x type: %d vote: %u\n",
qcg->mask, type, vote);
for_each_cpu(cpu, &qcg->mask) {
err = dev_pm_qos_update_request(qos_req, vote);
if (err < 0)
return err;
++qos_req;
}
if (type == QOS_MAX)
qcg->voted = false;
else
qcg->voted = true;
qcg->curr_vote = vote;
return 0;
}
/* Unregister pm qos requests */
static int remove_group_qos(struct qos_cpu_group *qcg)
{
int err, cpu;
struct dev_pm_qos_request *qos_req = qcg->qos_req;
for_each_cpu(cpu, &qcg->mask) {
if (!dev_pm_qos_request_active(qos_req)) {
++qos_req;
continue;
}
err = dev_pm_qos_remove_request(qos_req);
if (err < 0)
return err;
qos_req++;
}
return 0;
}
/* Register pm qos request */
static int add_group_qos(struct qos_cpu_group *qcg, enum constraint type)
{
int cpu, err;
struct dev_pm_qos_request *qos_req = qcg->qos_req;
for_each_cpu(cpu, &qcg->mask) {
memset(qos_req, 0,
sizeof(struct dev_pm_qos_request));
err = dev_pm_qos_add_request(get_cpu_device(cpu),
qos_req,
DEV_PM_QOS_RESUME_LATENCY,
type);
if (err < 0)
return err;
qos_req++;
}
return 0;
}
/* Function to remove pm qos vote */
static void sdhci_msm_unvote_qos_all(struct sdhci_msm_host *msm_host)
{
struct sdhci_msm_qos_req *qos_req = msm_host->sdhci_qos;
struct qos_cpu_group *qcg;
int i, err;
if (!qos_req)
return;
qcg = qos_req->qcg;
for (i = 0; ((i < qos_req->num_groups) && qcg->initialized); i++,
qcg++) {
err = sdhci_msm_update_qos_constraints(qcg, QOS_MAX);
if (err)
dev_err(&msm_host->pdev->dev,
"Failed (%d) removing qos vote(%d)\n", err, i);
}
}
/* Function to vote pmqos from sdcc. */
static void sdhci_msm_vote_pmqos(struct mmc_host *mmc, int cpu)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct qos_cpu_group *qcg;
qcg = cpu_to_group(msm_host->sdhci_qos, cpu);
if (!qcg) {
dev_dbg(&msm_host->pdev->dev, "QoS group is undefined\n");
return;
}
if (qcg->voted)
return;
if (sdhci_msm_update_qos_constraints(qcg, QOS_PERF))
dev_err(&qcg->host->pdev->dev, "%s: update qos - failed\n",
__func__);
dev_dbg(&msm_host->pdev->dev, "Voted pmqos - cpu: %d\n", cpu);
}
static unsigned int sdhci_msm_get_sup_clk_rate(struct sdhci_host *host,
u32 req_clk)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct clk *core_clk = msm_host->bulk_clks[0].clk;
unsigned int sup_clk = -1;
if (req_clk < sdhci_msm_get_min_clock(host)) {
sup_clk = sdhci_msm_get_min_clock(host);
return sup_clk;
}
sup_clk = clk_round_rate(core_clk, clk_get_rate(core_clk));
if (host->clock != msm_host->clk_rate)
sup_clk = sup_clk / 2;
return sup_clk;
}
/**
* sdhci_msm_irq_affinity_notify - Callback for affinity changes
* @notify: context as to what irq was changed
* @mask: the new affinity mask
*
* This is a callback function used by the irq_set_affinity_notifier function
* so that we may register to receive changes to the irq affinity masks.
*/
static void
sdhci_msm_irq_affinity_notify(struct irq_affinity_notify *notify,
const cpumask_t *mask)
{
struct sdhci_msm_host *msm_host =
container_of(notify, struct sdhci_msm_host, affinity_notify);
struct platform_device *pdev = msm_host->pdev;
struct sdhci_msm_qos_req *qos_req = msm_host->sdhci_qos;
struct qos_cpu_group *qcg;
int i, err;
if (!qos_req)
return;
/*
* If device is in suspend mode, just update the active mask,
* vote would be taken care when device resumes.
*/
msm_host->sdhci_qos->active_mask = cpumask_first(mask);
if (pm_runtime_status_suspended(&pdev->dev))
return;
/* Cancel previous scheduled work and unvote votes */
qcg = qos_req->qcg;
for (i = 0; i < qos_req->num_groups; i++, qcg++) {
err = sdhci_msm_update_qos_constraints(qcg, QOS_MAX);
if (err)
pr_err("%s: Failed (%d) removing qos vote of grp(%d)\n",
mmc_hostname(msm_host->mmc), err, i);
}
sdhci_msm_vote_pmqos(msm_host->mmc,
msm_host->sdhci_qos->active_mask);
}
/**
* sdhci_msm_irq_affinity_release - Callback for affinity notifier release
* @ref: internal core kernel usage
*
* This is a callback function used by the irq_set_affinity_notifier function
* to inform the current notification subscriber that they will no longer
* receive notifications.
*/
static void
inline sdhci_msm_irq_affinity_release(struct kref __always_unused *ref)
{ }
/* Function for settig up qos based on parsed dt entries */
static int sdhci_msm_setup_qos(struct sdhci_msm_host *msm_host)
{
struct platform_device *pdev = msm_host->pdev;
struct sdhci_msm_qos_req *qr = msm_host->sdhci_qos;
struct qos_cpu_group *qcg = qr->qcg;
struct mmc_host *mmc = msm_host->mmc;
struct sdhci_host *host = mmc_priv(mmc);
int i, err;
if (!msm_host->sdhci_qos)
return 0;
/* Affine irq to first set of mask */
WARN_ON(irq_set_affinity_hint(host->irq, &qcg->mask));
/* Setup notifier for case of affinity change/migration */
msm_host->affinity_notify.notify = sdhci_msm_irq_affinity_notify;
msm_host->affinity_notify.release = sdhci_msm_irq_affinity_release;
irq_set_affinity_notifier(host->irq, &msm_host->affinity_notify);
for (i = 0; i < qr->num_groups; i++, qcg++) {
qcg->qos_req = kcalloc(cpumask_weight(&qcg->mask),
sizeof(struct dev_pm_qos_request),
GFP_KERNEL);
if (!qcg->qos_req) {
dev_err(&pdev->dev, "Memory allocation failed\n");
if (!i)
return -ENOMEM;
goto free_mem;
}
err = add_group_qos(qcg, S32_MAX);
if (err < 0) {
dev_err(&pdev->dev, "Fail (%d) add qos-req: grp-%d\n",
err, i);
if (!i) {
kfree(qcg->qos_req);
return err;
}
goto free_mem;
}
qcg->initialized = true;
dev_dbg(&pdev->dev, "%s: qcg: 0x%08x | mask: 0x%08x\n",
__func__, qcg, qcg->mask);
}
/* Vote pmqos during setup for first set of mask*/
sdhci_msm_update_qos_constraints(qr->qcg, QOS_PERF);
qr->active_mask = cpumask_first(&qr->qcg->mask);
return 0;
free_mem:
while (i--) {
kfree(qcg->qos_req);
qcg--;
}
return err;
}
/*
* QoS init function. It parses dt entries and intializes data
* structures.
*/
static void sdhci_msm_qos_init(struct sdhci_msm_host *msm_host)
{
struct platform_device *pdev = msm_host->pdev;
struct device_node *np = pdev->dev.of_node;
struct device_node *group_node;
struct sdhci_msm_qos_req *qr;
struct qos_cpu_group *qcg;
cpumask_t silver_mask;
cpumask_t gold_mask;
cpumask_t gold_prime_mask;
int cid_cpu[MAX_NUM_CLUSTERS] = {-1, -1, -1};
int cid = -1;
int prev_cid = -1;
int cpu;
int i, err;
qr = kzalloc(sizeof(*qr), GFP_KERNEL);
if (!qr)
return;
msm_host->sdhci_qos = qr;
/* find numbers of qos child node present */
qr->num_groups = of_get_available_child_count(np);
dev_dbg(&pdev->dev, "num-groups: %d\n", qr->num_groups);
if (!qr->num_groups) {
dev_err(&pdev->dev, "QoS groups undefined\n");
kfree(qr);
msm_host->sdhci_qos = NULL;
return;
}
qcg = kzalloc(sizeof(*qcg) * qr->num_groups, GFP_KERNEL);
if (!qcg) {
msm_host->sdhci_qos = NULL;
kfree(qr);
return;
}
/*
* Due to Logical contiguous CPU numbering, one to one mapping
* between physical and logical cpu is no more applicable.
* Hence we don't need to pass the qos mask from the device tree
* and instead need to populate the mask dynamically
* using available kernel API.
*/
for_each_cpu(cpu, cpu_possible_mask) {
cid = topology_physical_package_id(cpu);
if (cid != prev_cid) {
cid_cpu[cid] = cpu;
prev_cid = cid;
}
}
if (cid_cpu[SILVER_CORE] != -1)
silver_mask.bits[0] =
topology_core_cpumask(cid_cpu[SILVER_CORE])->bits[0];
if (cid_cpu[GOLD_CORE] != -1)
gold_mask.bits[0] =
topology_core_cpumask(cid_cpu[GOLD_CORE])->bits[0];
if (cid_cpu[GOLD_PRIME_CORE] != -1)
gold_prime_mask.bits[0] =
topology_core_cpumask(cid_cpu[GOLD_PRIME_CORE])->bits[0];
/*
* Assign qos cpu group/cluster to host qos request and
* read child entries of qos node
*/
qr->qcg = qcg;
for_each_available_child_of_node(np, group_node) {
if (of_property_read_bool(group_node, "perf"))
qcg->mask.bits[0] = gold_mask.bits[0] |
gold_prime_mask.bits[0];
else
qcg->mask.bits[0] = silver_mask.bits[0];
err = of_property_count_u32_elems(group_node, "vote");
if (err <= 0) {
dev_err(&pdev->dev, "1 vote is needed, bailing out\n");
goto out_vote_err;
}
qcg->votes = kmalloc(sizeof(*qcg->votes) * err, GFP_KERNEL);
if (!qcg->votes)
goto out_vote_err;
for (i = 0; i < err; i++) {
if (of_property_read_u32_index(group_node, "vote", i,
&qcg->votes[i]))
goto out_vote_err;
}
qcg->host = msm_host;
++qcg;
}
err = sdhci_msm_setup_qos(msm_host);
if (!err)
return;
dev_err(&pdev->dev, "Failed to setup PM QoS.\n");
out_vote_err:
for (i = 0, qcg = qr->qcg; i < qr->num_groups; i++, qcg++)
kfree(qcg->votes);
kfree(qr->qcg);
kfree(qr);
msm_host->sdhci_qos = NULL;
}
static ssize_t dbg_state_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
bool v;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (kstrtobool(buf, &v))
return -EINVAL;
msm_host->dbg_en = v;
return count;
}
static ssize_t dbg_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
#if defined(CONFIG_SDHCI_MSM_DBG)
msm_host->dbg_en = true;
#endif
return scnprintf(buf, PAGE_SIZE, "%d\n", msm_host->dbg_en);
}
static DEVICE_ATTR_RW(dbg_state);
static struct attribute *sdhci_msm_sysfs_attrs[] = {
&dev_attr_dbg_state.attr,
NULL
};
static const struct attribute_group sdhci_msm_sysfs_group = {
.name = "qcom",
.attrs = sdhci_msm_sysfs_attrs,
};
static int sdhci_msm_init_sysfs(struct device *dev)
{
int ret;
ret = sysfs_create_group(&dev->kobj, &sdhci_msm_sysfs_group);
if (ret)
dev_err(dev, "%s: Failed to create qcom sysfs group (err = %d)\n",
__func__, ret);
return ret;
}
static ssize_t show_sdhci_msm_clk_gating(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
return scnprintf(buf, PAGE_SIZE, "%u\n", msm_host->clk_gating_delay);
}
static ssize_t store_sdhci_msm_clk_gating(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
uint32_t value;
if (!kstrtou32(buf, 0, &value)) {
msm_host->clk_gating_delay = value;
dev_info(dev, "set clk scaling work delay (%u)\n", value);
}
return count;
}
static ssize_t show_sdhci_msm_pm_qos(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
return scnprintf(buf, PAGE_SIZE, "%u\n", msm_host->pm_qos_delay);
}
static ssize_t store_sdhci_msm_pm_qos(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
uint32_t value;
if (!kstrtou32(buf, 0, &value)) {
msm_host->pm_qos_delay = value;
dev_info(dev, "set pm qos work delay (%u)\n", value);
}
return count;
}
static void sdhci_msm_init_sysfs_gating_qos(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
int ret;
msm_host->clk_gating.show = show_sdhci_msm_clk_gating;
msm_host->clk_gating.store = store_sdhci_msm_clk_gating;
sysfs_attr_init(&msm_host->clk_gating.attr);
msm_host->clk_gating.attr.name = "clk_gating";
msm_host->clk_gating.attr.mode = 0644;
ret = device_create_file(dev, &msm_host->clk_gating);
if (ret) {
pr_err("%s: %s: failed creating clk gating attr: %d\n",
mmc_hostname(host->mmc), __func__, ret);
}
msm_host->pm_qos.show = show_sdhci_msm_pm_qos;
msm_host->pm_qos.store = store_sdhci_msm_pm_qos;
sysfs_attr_init(&msm_host->pm_qos.attr);
msm_host->pm_qos.attr.name = "pm_qos";
msm_host->pm_qos.attr.mode = 0644;
ret = device_create_file(dev, &msm_host->pm_qos);
if (ret) {
pr_err("%s: %s: failed creating pm qos attr: %d\n",
mmc_hostname(host->mmc), __func__, ret);
}
}
static void sdhci_msm_setup_pm(struct platform_device *pdev,
struct sdhci_msm_host *msm_host)
{
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
if (!(msm_host->mmc->caps & MMC_CAP_SYNC_RUNTIME_PM)) {
pm_runtime_set_autosuspend_delay(&pdev->dev,
MSM_MMC_AUTOSUSPEND_DELAY_MS);
pm_runtime_use_autosuspend(&pdev->dev);
}
}
static int sdhci_msm_setup_ice_clk(struct sdhci_msm_host *msm_host,
struct platform_device *pdev)
{
int ret = 0;
struct clk *clk;
msm_host->bulk_clks[2].clk = NULL;
/* Setup SDC ICE clock */
clk = devm_clk_get(&pdev->dev, "ice_core");
if (!IS_ERR(clk)) {
msm_host->bulk_clks[2].clk = clk;
/* Set maximum clock rate for ice clk */
ret = clk_set_rate(clk, msm_host->ice_clk_max);
if (ret) {
dev_err(&pdev->dev, "ICE_CLK rate set failed (%d) for %u\n",
ret, msm_host->ice_clk_max);
return ret;
}
msm_host->ice_clk_rate = msm_host->ice_clk_max;
}
return ret;
}
static void sdhci_msm_set_caps(struct sdhci_msm_host *msm_host)
{
msm_host->mmc->caps |= MMC_CAP_AGGRESSIVE_PM;
msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
}
/* RUMI W/A for SD card */
static void sdhci_msm_set_rumi_bus_mode(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_msm_offset *msm_offset = msm_host->offset;
u32 config = readl_relaxed(host->ioaddr +
msm_offset->core_vendor_spec_capabilities1);
if (!(host->mmc->caps & MMC_CAP_NONREMOVABLE)) {
config &= ~(VS_CAPABILITIES_SDR_104_SUPPORT |
VS_CAPABILITIES_DDR_50_SUPPORT |
VS_CAPABILITIES_SDR_50_SUPPORT);
writel_relaxed(config, host->ioaddr +
msm_offset->core_vendor_spec_capabilities1);
}
}
static u32 is_bootdevice_sdhci = SDHCI_BOOT_DEVICE;
static int sdhci_qcom_read_boot_config(struct platform_device *pdev)
{
u32 *buf;
size_t len;
struct nvmem_cell *cell;
cell = nvmem_cell_get(&pdev->dev, "boot_conf");
if (IS_ERR(cell)) {
dev_warn(&pdev->dev, "nvmem cell get failed\n");
return 0;
}
buf = nvmem_cell_read(cell, &len);
if (IS_ERR(buf)) {
dev_warn(&pdev->dev, "nvmem cell read failed\n");
nvmem_cell_put(cell);
return 0;
}
is_bootdevice_sdhci = (*buf) >> 1 & 0x1f;
dev_info(&pdev->dev, "boot_config val = %x is_bootdevice_sdhci = %x\n",
*buf, is_bootdevice_sdhci);
kfree(buf);
nvmem_cell_put(cell);
return is_bootdevice_sdhci;
}
static void sdhci_msm_set_sdio_pm_flag(void *unused, struct mmc_host *host)
{
host->pm_flags &= ~MMC_PM_WAKE_SDIO_IRQ;
}
static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
{
struct mmc_host *host = cb_data;
*busy = host->ops->card_busy(host);
return 0;
}
static int mmc_sleepawake(struct mmc_host *host)
{
struct mmc_command cmd = {};
struct mmc_card *card = host->card;
unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
bool use_r1b_resp;
int err;
/* Re-tuning can't be done once the card is deselected */
mmc_retune_hold(host);
cmd.opcode = MMC_SLEEP_AWAKE;
cmd.arg = card->rca << 16;
use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
err = mmc_wait_for_cmd(host, &cmd, 0);
if (err)
goto out_release;
/*
* If the host does not wait while the card signals busy, then we can
* try to poll, but only if the host supports HW polling, as the
* SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
* to wait the sleep/awake timeout.
*/
if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp) {
err = mmc_select_card(card);
goto out_release;
}
if (!host->ops->card_busy) {
mmc_delay(timeout_ms);
goto out_release;
}
err = __mmc_poll_for_busy(card, timeout_ms, &mmc_sleep_busy_cb, host);
out_release:
mmc_retune_release(host);
return err;
}
static int mmc_test_awake_ext_csd(struct mmc_host *mmc)
{
int err;
u8 *ext_csd;
struct mmc_card *card = mmc->card;
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
err = mmc_get_ext_csd(card, &ext_csd);
if (err) {
pr_err("%s: %s: mmc_get_ext_csd failed (%d)\n",
mmc_hostname(mmc), __func__, err);
return err;
}
/* only compare read/write fields that the sw changes */
pr_debug("%s: %s: type(cached:current) cmdq(%d:%d) cache_ctrl(%d:%d) bus_width (%d:%d) timing(%d:%d)\n",
mmc_hostname(mmc), __func__,
msm_host->raw_ext_csd_cmdq,
ext_csd[EXT_CSD_CMDQ_MODE_EN],
msm_host->raw_ext_csd_cache_ctrl,
ext_csd[EXT_CSD_CACHE_CTRL],
msm_host->raw_ext_csd_bus_width,
ext_csd[EXT_CSD_BUS_WIDTH],
msm_host->raw_ext_csd_hs_timing,
ext_csd[EXT_CSD_HS_TIMING]);
err = !((msm_host->raw_ext_csd_cmdq ==
ext_csd[EXT_CSD_CMDQ_MODE_EN]) &&
(msm_host->raw_ext_csd_cache_ctrl ==
ext_csd[EXT_CSD_CACHE_CTRL]) &&
(msm_host->raw_ext_csd_bus_width ==
ext_csd[EXT_CSD_BUS_WIDTH]) &&
(msm_host->raw_ext_csd_hs_timing ==
ext_csd[EXT_CSD_HS_TIMING]));
kfree(ext_csd);
return err;
}
static int mmc_cache_card_ext_csd(struct mmc_host *mmc)
{
int err;
u8 *ext_csd;
struct mmc_card *card = mmc->card;
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
err = mmc_get_ext_csd(card, &ext_csd);
if (err || !ext_csd) {
pr_err("%s: %s: mmc_get_ext_csd failed (%d)\n",
mmc_hostname(mmc), __func__, err);
return err;
}
/* only cache read/write fields that the sw changes */
msm_host->raw_ext_csd_cmdq = ext_csd[EXT_CSD_CMDQ_MODE_EN];
msm_host->raw_ext_csd_cache_ctrl = ext_csd[EXT_CSD_CACHE_CTRL];
msm_host->raw_ext_csd_bus_width = ext_csd[EXT_CSD_BUS_WIDTH];
msm_host->raw_ext_csd_hs_timing = ext_csd[EXT_CSD_HS_TIMING];
kfree(ext_csd);
return 0;
}
static int mmc_partial_init(struct mmc_host *mmc)
{
int err = 0;
struct mmc_card *card = mmc->card;
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
mmc_set_bus_width(mmc, msm_host->cached_ios.bus_width);
mmc_set_timing(mmc, msm_host->cached_ios.timing);
if (msm_host->cached_ios.enhanced_strobe) {
mmc->ios.enhanced_strobe = true;
if (mmc->ops->hs400_enhanced_strobe)
mmc->ops->hs400_enhanced_strobe(mmc, &mmc->ios);
}
mmc_set_clock(mmc, msm_host->cached_ios.clock);
mmc_set_bus_mode(mmc, msm_host->cached_ios.bus_mode);
if (!mmc_card_hs400es(card) &&
(mmc_card_hs200(card) || mmc_card_hs400(card))) {
err = mmc_execute_tuning(card);
if (err) {
pr_err("%s: tuning execution failed: %d\n",
mmc_hostname(mmc), err);
goto out;
}
}
/*
* The ext_csd is read to make sure the card did not went through
* Power-failure during sleep period.
* A subset of the W/E_P, W/C_P register will be tested. In case
* these registers values are different from the values that were
* cached during suspend, we will conclude that a Power-failure occurred
* and will do full initialization sequence.
*/
err = mmc_test_awake_ext_csd(mmc);
if (err) {
pr_debug("%s: %s: fail on ext_csd read (%d)\n",
mmc_hostname(mmc), __func__, err);
}
#if IS_ENABLED(CONFIG_MMC_SDHCI_MSM_SCALING)
sdhci_msm_cqe_scaling_resume(host->mmc);
#endif
out:
return err;
}
static void mmc_cache_card(void *unused, struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
memcpy(&msm_host->cached_ios, &mmc->ios, sizeof(msm_host->cached_ios));
mmc_cache_card_ext_csd(mmc);
#if IS_ENABLED(CONFIG_MMC_SDHCI_MSM_SCALING)
sdhci_msm_disable_scaling(mmc);
#endif
}
static int mmc_can_sleep(struct mmc_card *card)
{
return card->ext_csd.rev >= 3;
}
static void partial_init(void *unused, struct mmc_host *host, bool *partial_init)
{
int err;
bool deepsleep = pm_suspend_via_firmware();
if (deepsleep) {
host->ops->hw_reset(host);
*partial_init = false;
pr_debug("%s: %s: deepsleep %d\n", mmc_hostname(host),
__func__, deepsleep);
return;
}
if (mmc_can_sleep(host->card)) {
err = mmc_sleepawake(host);
if (!err)
err = mmc_partial_init(host);
if (!err)
*partial_init = true;
else
*partial_init = false;
}
}
static int sdhci_msm_probe(struct platform_device *pdev)
{
struct sdhci_host *host;
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_msm_host *msm_host;
struct clk *clk;
int ret;
u16 host_version, core_minor;
u32 core_version, config;
u8 core_major;
const struct sdhci_msm_offset *msm_offset;
const struct sdhci_msm_variant_info *var_info;
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
if (of_property_read_bool(node, "non-removable") && sdhci_qcom_read_boot_config(pdev)) {
dev_err(dev, "SDHCI is not boot dev.\n");
return 0;
}
host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
if (IS_ERR(host))
return PTR_ERR(host);
host->sdma_boundary = 0;
pltfm_host = sdhci_priv(host);
msm_host = sdhci_pltfm_priv(pltfm_host);
msm_host->mmc = host->mmc;
msm_host->pdev = pdev;
sdhci_msm_init_sysfs(dev);
#if defined(CONFIG_SDHCI_MSM_DBG)
msm_host->dbg_en = true;
#endif
msm_host->sdhci_msm_ipc_log_ctx = ipc_log_context_create(SDHCI_MSM_MAX_LOG_SZ,
dev_name(&host->mmc->class_dev), 0);
if (!msm_host->sdhci_msm_ipc_log_ctx)
dev_warn(dev, "IPC Log init - failed\n");
/**
* System resume triggers a card detect interrupt even when there's no
* card inserted. Core layer acquires the registered wakeup source for
* 5s thus preventing system suspend for 5s at least.
* Disable this wakesource until this is sorted out.
*/
if ((host->mmc->ws) && !(host->mmc->caps & MMC_CAP_NONREMOVABLE)) {
wakeup_source_unregister(host->mmc->ws);
host->mmc->ws = NULL;
}
ret = mmc_of_parse(host->mmc);
if (ret)
goto pltfm_free;
if (pdev->dev.of_node) {
ret = of_alias_get_id(pdev->dev.of_node, "mmc");
if (ret < 0)
dev_err(&pdev->dev, "get slot index failed %d\n", ret);
else if (ret <= 1)
sdhci_slot[ret] = msm_host;
}
/*
* Based on the compatible string, load the required msm host info from
* the data associated with the version info.
*/
var_info = of_device_get_match_data(&pdev->dev);
if (!var_info) {
dev_err(&pdev->dev, "Compatible string not found\n");
goto pltfm_free;
}
msm_host->mci_removed = var_info->mci_removed;
msm_host->restore_dll_config = var_info->restore_dll_config;
msm_host->var_ops = var_info->var_ops;
msm_host->offset = var_info->offset;
msm_offset = msm_host->offset;
sdhci_get_of_property(pdev);
sdhci_msm_get_of_property(pdev, host);
msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
ret = sdhci_msm_populate_pdata(dev, msm_host);
if (ret) {
dev_err(&pdev->dev, "DT parsing error\n");
goto pltfm_free;
}
sdhci_msm_gcc_reset(&pdev->dev, host);
msm_host->regs_restore.is_supported =
of_property_read_bool(dev->of_node,
"qcom,restore-after-cx-collapse");
/* Setup SDCC bus voter clock. */
msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
if (!IS_ERR(msm_host->bus_clk)) {
/* Vote for max. clk rate for max. performance */
ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
if (ret)
goto pltfm_free;
ret = clk_prepare_enable(msm_host->bus_clk);
if (ret)
goto pltfm_free;
}
/* Setup main peripheral bus clock */
clk = devm_clk_get(&pdev->dev, "iface");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
goto bus_clk_disable;
}
msm_host->bulk_clks[1].clk = clk;
/* Setup SDC MMC clock */
clk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
goto bus_clk_disable;
}
msm_host->bulk_clks[0].clk = clk;
/* Check for optional interconnect paths */
ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
if (ret)
goto bus_clk_disable;
msm_host->opp_table = dev_pm_opp_set_clkname(&pdev->dev, "core");
if (IS_ERR(msm_host->opp_table)) {
ret = PTR_ERR(msm_host->opp_table);
goto bus_clk_disable;
}
/* OPP table is optional */
ret = dev_pm_opp_of_add_table(&pdev->dev);
if (!ret) {
msm_host->has_opp_table = true;
} else if (ret != -ENODEV) {
dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
goto opp_cleanup;
}
/* Vote for maximum clock rate for maximum performance */
ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
if (ret)
dev_warn(&pdev->dev, "core clock boost failed\n");
ret = sdhci_msm_setup_ice_clk(msm_host, pdev);
if (ret)
goto bus_clk_disable;
clk = devm_clk_get(&pdev->dev, "cal");
if (IS_ERR(clk))
clk = NULL;
msm_host->bulk_clks[3].clk = clk;
clk = devm_clk_get(&pdev->dev, "sleep");
if (IS_ERR(clk))
clk = NULL;
msm_host->bulk_clks[4].clk = clk;
ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
if (ret)
goto opp_cleanup;
ret = qcom_clk_set_flags(msm_host->bulk_clks[0].clk,
CLKFLAG_NORETAIN_MEM);
if (ret)
dev_err(&pdev->dev, "Failed to set core clk NORETAIN_MEM: %d\n",
ret);
ret = qcom_clk_set_flags(msm_host->bulk_clks[2].clk,
CLKFLAG_RETAIN_MEM);
if (ret)
dev_err(&pdev->dev, "Failed to set ice clk RETAIN_MEM: %d\n",
ret);
/*
* xo clock is needed for FLL feature of cm_dll.
* In case if xo clock is not mentioned in DT, warn and proceed.
*/
msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
if (IS_ERR(msm_host->xo_clk)) {
ret = PTR_ERR(msm_host->xo_clk);
dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
}
INIT_DELAYED_WORK(&msm_host->clk_gating_work,
sdhci_msm_clkgate_bus_delayed_work);
ret = sdhci_msm_bus_register(msm_host, pdev);
if (ret && !msm_host->skip_bus_bw_voting) {
dev_err(&pdev->dev, "Bus registration failed (%d)\n", ret);
goto clk_disable;
}
if (!msm_host->skip_bus_bw_voting)
sdhci_msm_bus_voting(host, true);
/* Setup regulators */
ret = sdhci_msm_vreg_init(&pdev->dev, msm_host, true);
if (ret) {
dev_err(&pdev->dev, "Regulator setup failed (%d)\n", ret);
goto bus_unregister;
}
if (!msm_host->mci_removed) {
msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(msm_host->core_mem)) {
ret = PTR_ERR(msm_host->core_mem);
goto vreg_deinit;
}
}
/* Reset the vendor spec register to power on reset state */
writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
host->ioaddr + msm_offset->core_vendor_spec);
/* Ensure SDHCI FIFO is enabled by disabling alternative FIFO */
config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3);
config &= ~CORE_FIFO_ALT_EN;
writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec3);
if (!msm_host->mci_removed) {
/* Set HC_MODE_EN bit in HC_MODE register */
msm_host_writel(msm_host, HC_MODE_EN, host,
msm_offset->core_hc_mode);
config = msm_host_readl(msm_host, host,
msm_offset->core_hc_mode);
config |= FF_CLK_SW_RST_DIS;
msm_host_writel(msm_host, config, host,
msm_offset->core_hc_mode);
}
if (of_property_read_bool(node, "is_rumi"))
sdhci_msm_set_rumi_bus_mode(host);
host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
SDHCI_VENDOR_VER_SHIFT));
core_version = msm_host_readl(msm_host, host,
msm_offset->core_mci_version);
core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
CORE_VERSION_MAJOR_SHIFT;
core_minor = core_version & CORE_VERSION_MINOR_MASK;
dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
core_version, core_major, core_minor);
sdhci_set_default_hw_caps(msm_host, host);
/*
* Support for some capabilities is not advertised by newer
* controller versions and must be explicitly enabled.
*/
if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
writel_relaxed(config, host->ioaddr +
msm_offset->core_vendor_spec_capabilities0);
}
if (core_major == 1 && core_minor >= 0x49)
msm_host->updated_ddr_cfg = true;
/* For SDHC v5.0.0 onwards, ICE 3.0 specific registers are added
* in CQ register space, due to which few CQ registers are
* shifted. Set cqhci_offset_changed boolean to use updated address.
*/
if (core_major == 1 && core_minor >= 0x6B)
msm_host->cqhci_offset_changed = true;
if (core_major == 1 && core_minor >= 0x71)
msm_host->uses_tassadar_dll = true;
ret = sdhci_msm_register_vreg(msm_host);
if (ret)
goto clk_disable;
/*
* Power on reset state may trigger power irq if previous status of
* PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
* interrupt in GIC, any pending power irq interrupt should be
* acknowledged. Otherwise power irq interrupt handler would be
* fired prematurely.
*/
sdhci_msm_handle_pwr_irq(host, 0);
/*
* Ensure that above writes are propogated before interrupt enablement
* in GIC.
*/
mb();
/* Setup IRQ for handling power/voltage tasks with PMIC */
msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
if (msm_host->pwr_irq < 0) {
ret = msm_host->pwr_irq;
goto vreg_deinit;
}
sdhci_msm_init_pwr_irq_wait(msm_host);
/* Enable pwr irq interrupts */
msm_host_writel(msm_host, INT_MASK, host,
msm_offset->core_pwrctl_mask);
ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
sdhci_msm_pwr_irq, IRQF_ONESHOT,
dev_name(&pdev->dev), host);
if (ret) {
dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
goto vreg_deinit;
}
sdhci_msm_set_caps(msm_host);
/* Enable force hw reset during cqe recovery */
msm_host->mmc->cqe_recovery_reset_always = true;
sdhci_msm_setup_pm(pdev, msm_host);
host->mmc_host_ops.start_signal_voltage_switch =
sdhci_msm_start_signal_voltage_switch;
host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
host->mmc_host_ops.init_card = sdhci_msm_init_card;
msm_host->workq = create_workqueue("sdhci_msm_generic_swq");
if (!msm_host->workq)
dev_err(&pdev->dev, "Generic swq creation failed\n");
msm_host->clk_gating_delay = MSM_CLK_GATING_DELAY_MS;
msm_host->pm_qos_delay = MSM_MMC_AUTOSUSPEND_DELAY_MS;
/* Initialize pmqos */
sdhci_msm_qos_init(msm_host);
/* Initialize sysfs entries */
sdhci_msm_init_sysfs_gating_qos(dev);
if (of_property_read_bool(node, "supports-cqe"))
ret = sdhci_msm_cqe_add_host(host, pdev);
else
ret = sdhci_add_host(host);
if (ret)
goto pm_runtime_disable;
if (of_property_read_bool(node, "mmc-rst-n-disable"))
msm_host->rst_n_disable = true;
else
msm_host->rst_n_disable = false;
/* For SDHC v5.0.0 onwards, ICE 3.0 specific registers are added
* in CQ register space, due to which few CQ registers are
* shifted. Set cqhci_offset_changed boolean to use updated address.
*/
if (core_major == 1 && core_minor >= 0x6B)
msm_host->cqhci_offset_changed = true;
/*
* Set platfm_init_done only after sdhci_add_host().
* So that we don't turn off vqmmc while we reset sdhc as
* part of sdhci_add_host().
*/
msm_host->pltfm_init_done = true;
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
if (msm_host->mmc->card && mmc_card_sdio(msm_host->mmc->card))
register_trace_android_vh_mmc_sdio_pm_flag_set(sdhci_msm_set_sdio_pm_flag, NULL);
if (host->mmc->caps & MMC_CAP_NONREMOVABLE) {
register_trace_android_rvh_mmc_cache_card_properties(mmc_cache_card, NULL);
register_trace_android_rvh_partial_init(partial_init, NULL);
}
return 0;
pm_runtime_disable:
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
vreg_deinit:
sdhci_msm_vreg_init(&pdev->dev, msm_host, false);
bus_unregister:
if (!msm_host->skip_bus_bw_voting) {
sdhci_msm_bus_get_and_set_vote(host, 0);
sdhci_msm_bus_unregister(&pdev->dev, msm_host);
}
clk_disable:
clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
opp_cleanup:
if (msm_host->has_opp_table)
dev_pm_opp_of_remove_table(&pdev->dev);
dev_pm_opp_put_clkname(msm_host->opp_table);
bus_clk_disable:
if (!IS_ERR(msm_host->bus_clk))
clk_disable_unprepare(msm_host->bus_clk);
pltfm_free:
sdhci_pltfm_free(pdev);
return ret;
}
static int sdhci_msm_remove(struct platform_device *pdev)
{
struct sdhci_host *host;
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_msm_host *msm_host;
struct sdhci_msm_qos_req *r;
struct qos_cpu_group *qcg;
struct device_node *np = pdev->dev.of_node;
int i;
int dead;
if (of_property_read_bool(np, "non-removable") && is_bootdevice_sdhci) {
dev_err(&pdev->dev, "SDHCI is not boot dev.\n");
return 0;
}
host = platform_get_drvdata(pdev);
pltfm_host = sdhci_priv(host);
msm_host = sdhci_pltfm_priv(pltfm_host);
r = msm_host->sdhci_qos;
dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
0xffffffff);
sdhci_remove_host(host, dead);
sdhci_msm_vreg_init(&pdev->dev, msm_host, false);
if (msm_host->has_opp_table)
dev_pm_opp_of_remove_table(&pdev->dev);
dev_pm_opp_put_clkname(msm_host->opp_table);
pm_runtime_get_sync(&pdev->dev);
/* Add delay to complete resume where qos vote is scheduled */
if (!r)
goto skip_removing_qos;
qcg = r->qcg;
msleep(50);
for (i = 0; i < r->num_groups; i++, qcg++) {
sdhci_msm_update_qos_constraints(qcg, QOS_MAX);
remove_group_qos(qcg);
}
destroy_workqueue(msm_host->workq);
skip_removing_qos:
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
if (!IS_ERR(msm_host->bus_clk))
clk_disable_unprepare(msm_host->bus_clk);
if (!msm_host->skip_bus_bw_voting) {
sdhci_msm_bus_get_and_set_vote(host, 0);
sdhci_msm_bus_unregister(&pdev->dev, msm_host);
}
sdhci_pltfm_free(pdev);
return 0;
}
static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct sdhci_msm_qos_req *qos_req = msm_host->sdhci_qos;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->runtime_suspended = true;
spin_unlock_irqrestore(&host->lock, flags);
sdhci_msm_log_str(msm_host, "Enter\n");
if (!qos_req)
goto skip_qos;
sdhci_msm_unvote_qos_all(msm_host);
skip_qos:
queue_delayed_work(msm_host->workq,
&msm_host->clk_gating_work,
msecs_to_jiffies(msm_host->clk_gating_delay));
return 0;
}
static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
struct sdhci_msm_qos_req *qos_req = msm_host->sdhci_qos;
unsigned long flags;
int ret;
sdhci_msm_log_str(msm_host, "Enter\n");
ret = cancel_delayed_work_sync(&msm_host->clk_gating_work);
if (!ret) {
sdhci_msm_bus_voting(host, true);
dev_pm_opp_set_rate(dev, msm_host->clk_rate);
ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
msm_host->bulk_clks);
if (ret) {
dev_err(dev, "Failed to enable clocks %d\n", ret);
sdhci_msm_bus_voting(host, false);
return ret;
}
sdhci_msm_registers_restore(host);
sdhci_msm_toggle_fifo_write_clk(host);
/*
* Whenever core-clock is gated dynamically, it's needed to
* restore the SDR DLL settings when the clock is ungated.
*/
if (msm_host->restore_dll_config && msm_host->clk_rate)
sdhci_msm_restore_sdr_dll_config(host);
}
if (!qos_req)
return 0;
sdhci_msm_vote_pmqos(msm_host->mmc,
msm_host->sdhci_qos->active_mask);
ret = sdhci_msm_ice_resume(msm_host);
if (ret)
return ret;
spin_lock_irqsave(&host->lock, flags);
host->runtime_suspended = false;
spin_unlock_irqrestore(&host->lock, flags);
return ret;
}
static int sdhci_msm_suspend_late(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
sdhci_msm_log_str(msm_host, "Enter\n");
if (flush_delayed_work(&msm_host->clk_gating_work))
dev_dbg(dev, "%s Waited for clk_gating_work to finish\n",
__func__);
return 0;
}
static int sdhci_msm_wrapper_suspend_late(struct device *dev)
{
struct device_node *np = dev->of_node;
if (of_property_read_bool(np, "non-removable") && is_bootdevice_sdhci) {
dev_info(dev, "SDHCI is not boot dev.\n");
return 0;
}
return sdhci_msm_suspend_late(dev);
}
static const struct dev_pm_ops sdhci_msm_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_LATE_SYSTEM_SLEEP_PM_OPS(sdhci_msm_wrapper_suspend_late, NULL)
SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
sdhci_msm_runtime_resume,
NULL)
};
static struct platform_driver sdhci_msm_driver = {
.probe = sdhci_msm_probe,
.remove = sdhci_msm_remove,
.driver = {
.name = "sdhci_msm",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = sdhci_msm_dt_match,
.pm = &sdhci_msm_pm_ops,
},
};
module_platform_driver(sdhci_msm_driver);
MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
MODULE_LICENSE("GPL v2");