Rtwo/kernel/motorola/sm8550/drivers/leds/leds-qti-flash.c
2025-09-30 19:22:48 -05:00

2425 lines
59 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
* Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries.
*/
#define pr_fmt(fmt) "qti-flash: %s: " fmt, __func__
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/hrtimer.h>
#include <linux/iio/consumer.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/led-class-flash.h>
#include <linux/leds-qti-flash.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/regmap.h>
#include <linux/soc/qcom/battery_charger.h>
#include "leds.h"
#define FLASH_LED_REVISION1 0x00
#define FLASH_LED_PERIPH_SUBTYPE 0x05
#define FLASH_LED_STATUS1 0x06
#define FLASH_LED_STATUS2 0x07
#define FLASH_LED_OTST1_STATUS BIT(5)
#define FLASH_LED_OTST2_STATUS BIT(4)
#define FLASH_LED_VPH_PWR_LOW BIT(0)
#define FLASH_INT_RT_STS 0x10
#define FLASH_LED_FAULT_RT_STS BIT(0)
#define FLASH_LED_ALL_RAMP_DN_DONE_RT_STS BIT(3)
#define FLASH_LED_ALL_RAMP_UP_DONE_RT_STS BIT(4)
#define FLASH_LED_SAFETY_TIMER(id) (0x3E + id)
#define FLASH_LED_SAFETY_TIMER_EN_MASK BIT(7)
#define FLASH_LED_SAFETY_TIMER_EN BIT(7)
#define SAFETY_TIMER_MAX_TIMEOUT_MS 1280
#define SAFETY_TIMER_MIN_TIMEOUT_MS 10
#define SAFETY_TIMER_STEP_SIZE 10
#define SAFETY_TIMER_DEFAULT_TIMEOUT_MS 200
#define FLASH_LED_ITARGET(id) (0x42 + id)
#define FLASH_LED_ITARGET_MASK GENMASK(6, 0)
#define FLASH_ENABLE_CONTROL 0x46
#define FLASH_MODULE_ENABLE BIT(7)
#define FLASH_MODULE_DISABLE 0x0
#define FLASH_LED_IRESOLUTION 0x49
#define FLASH_LED_IRESOLUTION_MASK(id) BIT(id)
#define FLASH_LED_STROBE_CTRL(id) (0x4A + id)
#define FLASH_LED_STROBE_CFG_MASK GENMASK(6, 4)
#define FLASH_LED_STROBE_CFG_SHIFT 4
#define FLASH_LED_HW_SW_STROBE_SEL BIT(2)
#define FLASH_LED_STROBE_SEL_SHIFT 2
#define FLASH_EN_LED_CTRL 0x4E
#define FLASH_LED_IBATT_OCP_THRESH_DEFAULT_UA 2500000
#define FLASH_LED_RPARA_DEFAULT_UOHM 80000
#define VPH_DROOP_THRESH_VAL_UV 3400000
#define FLASH_LED_ENABLE(id) BIT(id)
#define FLASH_LED_DISABLE 0
#define FLASH_LED_MITIGATION_SW 0x65
#define FLASH_LED_LMH_MITIGATION_SW_EN BIT(0)
#define FLASH_LED_THERMAL_OTST2_CFG1 0x78
#define FLASH_LED_THERMAL_OTST1_CFG1 0x7A
#define FLASH_LED_THERMAL_THRSH_MASK GENMASK(2, 0)
#define FLASH_LED_V1_OTST1_THRSH_MIN 0x13
#define FLASH_LED_V2_OTST1_THRSH_MIN 0x10
#define FLASH_LED_OTST2_THRSH_MIN 0x30
#define MAX_IRES_LEVELS 2
#define IRES_12P5_MAX_CURR_MA 1500
#define IRES_5P0_MAX_CURR_MA 640
#define TORCH_MAX_CURR_MA 500
#define INDICATOR_MAX_CURR_MA 100
#define IRES_12P5_UA 12500
#define IRES_5P0_UA 5000
#define IRES_DEFAULT_UA IRES_12P5_UA
#define MAX_FLASH_CURRENT_MA 2000
#define IBATT_OCP_THRESH_DEFAULT_UA 4500000
#define OTST1_CURR_LIM_MA 200
#define OTST2_CURR_LIM_MA 500
#define VLED_MAX_DEFAULT_UV 3500000
#define LED_MASK_ALL(led) GENMASK(led->data->max_channels - 1, 0)
#define FORCE_TORCH_MODE 0x68
#define FORCE_TORCH BIT(0)
enum flash_led_type {
FLASH_LED_TYPE_UNKNOWN,
FLASH_LED_TYPE_FLASH,
FLASH_LED_TYPE_TORCH,
FLASH_LED_TYPE_INDICATOR,
};
enum flash_led_revision {
FLASH_LED_REVISION_2P0 = 1,
};
enum flash_led_subtype {
FLASH_LED_4_CHAN = 0x7,
};
enum strobe_type {
SW_STROBE = 0,
HW_STROBE,
};
enum thermal_levels {
OTST1_IDX,
OTST2_IDX,
OTST_MAX,
};
enum pmic_type {
PM8350C,
PM2250,
};
struct flash_node_data {
struct qti_flash_led *led;
struct led_classdev_flash fdev;
u32 ires_ua;
u32 default_ires_ua;
u32 user_current_ma;
u32 current_ma;
u32 max_current;
u8 duration;
u8 id;
u8 updated_ires_idx;
u8 ires_idx;
u8 strobe_config;
u8 strobe_sel;
enum flash_led_type type;
bool configured;
bool enabled;
};
struct flash_switch_data {
struct qti_flash_led *led;
struct led_classdev cdev;
struct hrtimer on_timer;
struct hrtimer off_timer;
u64 on_time_ms;
u64 off_time_ms;
u32 led_mask;
bool enabled;
bool symmetry_en;
};
struct pmic_data {
u8 max_channels;
int pmic_type;
};
enum qti_flash_iio_props {
RBATT,
OCV,
IBAT,
F_TRIGGER,
F_ACTIVE,
};
static char *qti_flash_iio_prop_names[] = {
[RBATT] = "rbatt",
[OCV] = "voltage_ocv",
[IBAT] = "current_now",
[F_TRIGGER] = "flash_trigger",
[F_ACTIVE] = "flash_active",
};
/**
* struct qti_flash_led: Main Flash LED data structure
* @pdev: Pointer for platform device
* @regmap: Pointer for regmap structure
* @fnode: Pointer for array of child LED devices
* @snode: Pointer for array of child switch devices
* @batt_psy: Pointer for battery power supply
* @lock: Spinlock to be used for critical section
* @num_fnodes: Number of flash/torch nodes defined in device
* tree
* @num_snodes: Number of switch nodes defined in device tree
* @hw_strobe_gpio: Pointer for array of GPIOs for HW strobing
* @all_ramp_up_done_irq: IRQ number for all ramp up interrupt
* @all_ramp_down_done_irq: IRQ number for all ramp down interrupt
* @led_fault_irq: IRQ number for LED fault interrupt
* @max_current: Maximum current available for flash
* @thermal_derate_current: Thermal derating current limits
* @base: Base address of the flash LED module
* @revision: Revision of the flash LED module
* @subtype: Peripheral subtype of the flash LED module
* @chan_en_map: Bit map of individual channel enable
* @module_en: Flag used to enable/disable flash LED module
* @trigger_lmh: Flag to enable lmh mitigation
* @non_all_mask_switch_present: Used in handling symmetry for all_mask switch
* @secure_vm: Flag indicating whether flash LED is used by
* secure VM
* @debug_board_present: Flag to indicate debug board present
*/
struct qti_flash_led {
struct platform_device *pdev;
struct regmap *regmap;
struct flash_node_data *fnode;
struct flash_switch_data *snode;
struct power_supply *batt_psy;
struct power_supply *usb_psy;
struct iio_channel **iio_channels;
struct pmic_data *data;
spinlock_t lock;
u32 num_fnodes;
u32 num_snodes;
int *hw_strobe_gpio;
int all_ramp_up_done_irq;
int all_ramp_down_done_irq;
int led_fault_irq;
int ibatt_ocp_threshold_ua;
int max_current;
int thermal_derate_current[OTST_MAX];
u16 base;
u8 revision;
u8 subtype;
u8 chan_en_map;
bool module_en;
bool trigger_lmh;
bool non_all_mask_switch_present;
bool secure_vm;
bool debug_board_present;
};
struct flash_current_headroom {
u16 current_ma;
u16 headroom_mv;
};
static const struct flash_current_headroom pm8350c_map[4] = {
{750, 200}, {1000, 250}, {1250, 300}, {1500, 400},
};
static const u32 flash_led_max_ires_values[MAX_IRES_LEVELS] = {
IRES_5P0_MAX_CURR_MA, IRES_12P5_MAX_CURR_MA
};
static int timeout_to_code(u32 timeout)
{
if (!timeout || timeout > SAFETY_TIMER_MAX_TIMEOUT_MS)
return -EINVAL;
return DIV_ROUND_CLOSEST(timeout, SAFETY_TIMER_STEP_SIZE) - 1;
}
static int get_ires_idx(u32 ires_ua)
{
if (ires_ua == IRES_5P0_UA)
return 0;
else if (ires_ua == IRES_12P5_UA)
return 1;
else
return -EINVAL;
}
static int current_to_code(u32 target_curr_ma, u32 ires_ua)
{
if (!ires_ua || !target_curr_ma ||
(target_curr_ma < DIV_ROUND_CLOSEST(ires_ua, 1000)))
return 0;
return DIV_ROUND_CLOSEST(target_curr_ma * 1000, ires_ua) - 1;
}
static bool is_channel_configured(struct flash_node_data *fnode)
{
int i;
for (i = 0; i < fnode->led->num_fnodes; i++) {
if (fnode->led->fnode[i].id == fnode->id &&
fnode->led->fnode[i].type != fnode->type &&
fnode->led->fnode[i].configured) {
pr_debug("Channel %d for %s is already configured by %s\n", fnode->id,
fnode->fdev.led_cdev.name, fnode->led->fnode[i].fdev.led_cdev.name);
return true;
}
}
return false;
}
static int qti_flash_led_read(struct qti_flash_led *led, u16 offset,
u8 *data, u8 len)
{
int rc;
rc = regmap_bulk_read(led->regmap, (led->base + offset), data, len);
if (rc < 0)
pr_err("Failed to read from 0x%04X rc = %d\n",
(led->base + offset), rc);
else
pr_debug("Read %*ph from addr %#x\n", len, data,
(led->base + offset));
return rc;
}
static int qti_flash_led_write(struct qti_flash_led *led, u16 offset,
u8 *data, u8 len)
{
int rc;
rc = regmap_bulk_write(led->regmap, (led->base + offset), data,
len);
if (rc < 0)
pr_err("Failed to write to 0x%04X rc = %d\n",
(led->base + offset), rc);
else
pr_debug("Wrote %*ph to addr %#x\n", len, data,
(led->base + offset));
return rc;
}
static int qti_flash_led_masked_write(struct qti_flash_led *led,
u16 offset, u8 mask, u8 data)
{
int rc;
rc = regmap_update_bits(led->regmap, (led->base + offset),
mask, data);
if (rc < 0)
pr_err("Failed to update bits from 0x%04X, rc = %d\n",
(led->base + offset), rc);
else
pr_debug("Wrote %#x mask %#x to addr %#x\n", data, mask,
(led->base + offset));
return rc;
}
static int qti_flash_get_iio_chan(struct qti_flash_led *led,
enum qti_flash_iio_props chan)
{
int rc = 0;
/*
* if the channel pointer is not-NULL and has a ERR value it has
* already been queried upon earlier, hence return from here.
*/
if (IS_ERR(led->iio_channels[chan]))
return -EINVAL;
if (!led->iio_channels[chan]) {
led->iio_channels[chan] = iio_channel_get(&led->pdev->dev,
qti_flash_iio_prop_names[chan]);
if (IS_ERR(led->iio_channels[chan])) {
rc = PTR_ERR(led->iio_channels[chan]);
if (rc == -EPROBE_DEFER) {
led->iio_channels[chan] = NULL;
return rc;
}
pr_err("%s channel unavailable %d\n",
qti_flash_iio_prop_names[chan], rc);
return rc;
}
}
return 0;
}
static int qti_flash_iio_getprop(struct qti_flash_led *led,
enum qti_flash_iio_props chan, int *data)
{
int rc = 0;
rc = qti_flash_get_iio_chan(led, chan);
if (rc < 0)
return rc;
rc = iio_read_channel_processed(led->iio_channels[chan], data);
if (rc < 0)
pr_err("Error in reading IIO channel data rc = %d\n", rc);
return rc;
}
static int qti_flash_iio_setprop(struct qti_flash_led *led,
enum qti_flash_iio_props chan, int data)
{
int rc = 0;
rc = qti_flash_get_iio_chan(led, chan);
if (rc < 0)
return rc;
rc = iio_write_channel_raw(led->iio_channels[chan], data);
if (rc < 0)
pr_err("Error in writing IIO channel data rc = %d\n", rc);
return rc;
}
static int qti_flash_poll_vreg_ok(struct qti_flash_led *led)
{
int rc, i, pval;
if (led->data->pmic_type != PM2250)
return 0;
for (i = 0; i < 60; i++) {
/* wait for the flash vreg_ok to be set */
mdelay(5);
rc = qti_flash_iio_getprop(led, F_TRIGGER, &pval);
if (rc < 0) {
pr_err("Failure reading Flash trigger prop rc = %d\n",
rc);
return rc;
}
if (pval > 0) {
pr_debug("Flash trigger set\n");
break;
}
if (pval < 0) {
pr_err("Error during flash trigger %d\n", pval);
return pval;
}
}
if (!pval) {
pr_err("Failed to enable the module\n");
return -ETIMEDOUT;
}
return 0;
}
static int qti_flash_led_module_control(struct qti_flash_led *led,
bool enable)
{
int rc = 0;
u8 val;
if (enable) {
if (!led->module_en && led->chan_en_map) {
val = FLASH_MODULE_ENABLE;
rc = qti_flash_led_write(led, FLASH_ENABLE_CONTROL,
&val, 1);
if (rc < 0)
return rc;
led->module_en = true;
}
} else {
if (led->module_en && !led->chan_en_map) {
val = FLASH_MODULE_DISABLE;
rc = qti_flash_led_write(led, FLASH_ENABLE_CONTROL,
&val, 1);
if (rc < 0)
return rc;
led->module_en = false;
}
}
return rc;
}
static int qti_flash_lmh_mitigation_config(struct qti_flash_led *led,
bool enable)
{
u8 val = enable ? FLASH_LED_LMH_MITIGATION_SW_EN : 0;
int rc;
if (led->debug_board_present || enable == led->trigger_lmh)
return 0;
rc = qti_flash_led_write(led, FLASH_LED_MITIGATION_SW, &val, 1);
if (rc < 0) {
pr_err("Failed to %s LMH mitigation, rc=%d\n",
enable ? "enable" : "disable", rc);
} else {
pr_debug("%s LMH mitigation\n",
enable ? "enabled" : "disabled");
led->trigger_lmh = enable;
}
return rc;
}
static int qti_flash_led_strobe(struct qti_flash_led *led,
struct flash_switch_data *snode,
u8 mask, u8 value)
{
int rc, i;
bool enable = mask & value;
spin_lock(&led->lock);
if (enable) {
for (i = 0; i < led->data->max_channels; i++)
if ((mask & BIT(i)) && (value & BIT(i)))
led->chan_en_map |= BIT(i);
rc = qti_flash_led_module_control(led, enable);
if (rc < 0)
goto error;
spin_unlock(&led->lock);
rc = qti_flash_poll_vreg_ok(led);
spin_lock(&led->lock);
if (rc < 0) {
/* Disable the module */
rc = qti_flash_led_module_control(led, false);
if (rc < 0)
goto error;
}
for (i = 0; i < led->num_fnodes; i++) {
if ((mask & BIT(led->fnode[i].id)) &&
led->fnode[i].configured &&
led->fnode[i].type == FLASH_LED_TYPE_TORCH &&
led->subtype == 0x6) {
rc = qti_flash_led_masked_write(led,
FORCE_TORCH_MODE,
FORCE_TORCH, FORCE_TORCH);
if (rc < 0)
goto error;
}
}
if (snode && snode->off_time_ms) {
pr_debug("Off timer started with delay %d ms\n",
snode->off_time_ms);
hrtimer_start(&snode->off_timer,
ms_to_ktime(snode->off_time_ms),
HRTIMER_MODE_REL);
}
rc = qti_flash_led_masked_write(led, FLASH_EN_LED_CTRL,
mask, value);
if (rc < 0)
goto error;
} else {
for (i = 0; i < led->data->max_channels; i++)
if ((led->chan_en_map & BIT(i)) &&
(mask & BIT(i)) && !(value & BIT(i)))
led->chan_en_map &= ~(BIT(i));
rc = qti_flash_led_masked_write(led, FLASH_EN_LED_CTRL,
mask, value);
if (rc < 0)
goto error;
for (i = 0; i < led->num_fnodes; i++) {
if ((mask & BIT(led->fnode[i].id)) &&
led->fnode[i].configured &&
led->fnode[i].type == FLASH_LED_TYPE_TORCH &&
led->subtype == 0x6) {
rc = qti_flash_led_masked_write(led,
FORCE_TORCH_MODE, FORCE_TORCH, 0);
if (rc < 0)
goto error;
}
}
if (led->trigger_lmh) {
rc = qti_flash_lmh_mitigation_config(led, false);
if (rc < 0)
goto error;
}
rc = qti_flash_led_module_control(led, enable);
}
error:
spin_unlock(&led->lock);
return rc;
}
static int qti_flash_led_enable(struct flash_node_data *fnode)
{
struct qti_flash_led *led = fnode->led;
int rc;
u8 val, addr_offset;
addr_offset = fnode->id;
spin_lock(&led->lock);
val = (fnode->updated_ires_idx ? 0 : 1) << fnode->id;
rc = qti_flash_led_masked_write(led, FLASH_LED_IRESOLUTION,
FLASH_LED_IRESOLUTION_MASK(fnode->id), val);
if (rc < 0)
goto out;
rc = qti_flash_led_masked_write(led,
FLASH_LED_ITARGET(addr_offset), FLASH_LED_ITARGET_MASK,
current_to_code(fnode->current_ma, fnode->ires_ua));
if (rc < 0)
goto out;
/*
* For dynamic brightness control of Torch LEDs,
* just configure the target current.
*/
if ((fnode->type == FLASH_LED_TYPE_TORCH
|| fnode->type == FLASH_LED_TYPE_INDICATOR)
&& fnode->enabled) {
spin_unlock(&led->lock);
return 0;
}
if (fnode->type == FLASH_LED_TYPE_FLASH) {
val = fnode->duration | FLASH_LED_SAFETY_TIMER_EN;
rc = qti_flash_led_write(led,
FLASH_LED_SAFETY_TIMER(addr_offset), &val, 1);
if (rc < 0)
goto out;
}
fnode->configured = true;
if ((fnode->strobe_sel == HW_STROBE) &&
gpio_is_valid(led->hw_strobe_gpio[fnode->id]))
gpio_set_value(led->hw_strobe_gpio[fnode->id], 1);
out:
spin_unlock(&led->lock);
return rc;
}
static int qti_flash_led_disable(struct flash_node_data *fnode)
{
struct qti_flash_led *led = fnode->led;
int rc;
if (!fnode->configured) {
pr_debug("%s is not configured\n", fnode->fdev.led_cdev.name);
return 0;
}
spin_lock(&led->lock);
if ((fnode->strobe_sel == HW_STROBE) &&
gpio_is_valid(led->hw_strobe_gpio[fnode->id]))
gpio_set_value(led->hw_strobe_gpio[fnode->id], 0);
rc = qti_flash_led_masked_write(led,
FLASH_LED_ITARGET(fnode->id), FLASH_LED_ITARGET_MASK, 0);
if (rc < 0)
goto out;
rc = qti_flash_led_masked_write(led,
FLASH_LED_SAFETY_TIMER(fnode->id),
FLASH_LED_SAFETY_TIMER_EN_MASK, 0);
if (rc < 0)
goto out;
fnode->configured = false;
fnode->current_ma = 0;
fnode->user_current_ma = 0;
out:
spin_unlock(&led->lock);
return rc;
}
static enum led_brightness qti_flash_led_brightness_get(
struct led_classdev *led_cdev)
{
return led_cdev->brightness;
}
static int __qti_flash_led_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct flash_node_data *fnode = NULL;
struct led_classdev_flash *fdev = NULL;
int rc;
u32 current_ma = brightness;
u32 min_current_ma;
fdev = container_of(led_cdev, struct led_classdev_flash, led_cdev);
fnode = container_of(fdev, struct flash_node_data, fdev);
if (!brightness) {
rc = qti_flash_led_strobe(fnode->led, NULL,
FLASH_LED_ENABLE(fnode->id), 0);
if (rc < 0) {
pr_err("Failed to destrobe LED, rc=%d\n", rc);
return rc;
}
rc = qti_flash_led_disable(fnode);
if (rc < 0)
pr_err("Failed to disable LED\n");
led_cdev->brightness = 0;
return rc;
}
min_current_ma = DIV_ROUND_CLOSEST(fnode->ires_ua, 1000);
if (current_ma < min_current_ma)
current_ma = min_current_ma;
fnode->updated_ires_idx = fnode->ires_idx;
fnode->ires_ua = fnode->default_ires_ua;
current_ma = min(current_ma, fnode->max_current);
if (current_ma > flash_led_max_ires_values[fnode->ires_idx]) {
if (current_ma > IRES_5P0_MAX_CURR_MA)
fnode->ires_ua = IRES_12P5_UA;
else
fnode->ires_ua = IRES_5P0_UA;
fnode->ires_idx = get_ires_idx(fnode->ires_ua);
}
fnode->current_ma = current_ma;
led_cdev->brightness = current_ma;
rc = qti_flash_led_enable(fnode);
if (rc < 0) {
pr_err("Failed to set brightness %d to LED\n", brightness);
return rc;
}
if (fnode->type == FLASH_LED_TYPE_INDICATOR) {
rc = qti_flash_led_strobe(fnode->led, NULL,
FLASH_LED_ENABLE(fnode->id), FLASH_LED_ENABLE(fnode->id));
if (rc < 0)
pr_err("Failed to strobe LED, rc=%d\n", rc);
}
return rc;
}
static int qti_flash_config_group_symmetry(struct qti_flash_led *led,
enum flash_led_type type,
u32 led_mask)
{
int i, rc = 0, total_curr_ma = 0, symmetric_leds = 0, per_led_curr_ma;
for (i = 0; i < led->num_fnodes; i++) {
if ((led_mask & BIT(led->fnode[i].id)) &&
(led->fnode[i].type == type)) {
total_curr_ma += led->fnode[i].user_current_ma;
symmetric_leds++;
}
}
if (!symmetric_leds) {
pr_err("led-mask %#x has zero symmetric leds\n", led_mask);
return -EINVAL;
}
per_led_curr_ma = total_curr_ma / symmetric_leds;
pr_debug("mask: %#x symmetric_leds: %d total: %d per_led_curr_ma: %d\n",
led_mask, symmetric_leds, total_curr_ma, per_led_curr_ma);
for (i = 0; i < led->num_fnodes; i++) {
if (led_mask & BIT(led->fnode[i].id) &&
led->fnode[i].type == type) {
rc = __qti_flash_led_brightness_set(
&led->fnode[i].fdev.led_cdev, per_led_curr_ma);
if (rc < 0)
return rc;
}
}
return rc;
}
static int qti_flash_led_symmetry_config(struct flash_switch_data *snode)
{
struct qti_flash_led *led = snode->led;
enum flash_led_type type = FLASH_LED_TYPE_UNKNOWN;
int i, rc = 0;
/* Determine which LED type has triggered switch ON */
for (i = 0; i < led->num_fnodes; i++) {
if ((snode->led_mask & BIT(led->fnode[i].id)) &&
(led->fnode[i].configured))
type = led->fnode[i].type;
}
if (type == FLASH_LED_TYPE_UNKNOWN) {
/* No channels are configured */
return 0;
}
if (snode->led_mask == LED_MASK_ALL(led) &&
led->non_all_mask_switch_present) {
/*
* Gather masks from the other switches and configure symmetry
* accordingly.
*/
for (i = 0; i < led->num_snodes; i++) {
if (led->snode[i].led_mask != LED_MASK_ALL(led)) {
rc = qti_flash_config_group_symmetry(led, type,
led->snode[i].led_mask);
if (rc < 0)
return rc;
}
}
} else {
rc = qti_flash_config_group_symmetry(led, type,
snode->led_mask);
}
return rc;
}
static void qti_flash_led_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct led_classdev_flash *fdev;
struct flash_node_data *fnode;
struct qti_flash_led *led;
int i, rc;
fdev = container_of(led_cdev, struct led_classdev_flash, led_cdev);
fnode = container_of(fdev, struct flash_node_data, fdev);
led = fnode->led;
if (is_channel_configured(fnode))
return;
rc = __qti_flash_led_brightness_set(led_cdev, brightness);
if (!rc)
fnode->user_current_ma = brightness;
else
return;
for (i = 0; i < led->num_snodes; i++) {
pr_debug("snode[%d] symm %d, enabled %d\n", i,
led->snode[i].symmetry_en,
led->snode[i].enabled);
if (led->snode[i].symmetry_en && led->snode[i].enabled) {
qti_flash_led_symmetry_config(&led->snode[i]);
break;
}
}
}
#define FLASH_LMH_TRIGGER_LIMIT_MA 1000
static int qti_flash_switch_enable(struct flash_switch_data *snode)
{
struct qti_flash_led *led = snode->led;
int rc = 0, total_curr_ma = 0, i;
enum flash_led_type type = FLASH_LED_TYPE_UNKNOWN;
u8 led_en = 0;
/* If symmetry enabled switch, then turn ON all its LEDs */
if (snode->symmetry_en) {
rc = qti_flash_led_symmetry_config(snode);
if (rc < 0) {
pr_err("Failed to configure switch symmetrically, rc=%d\n",
rc);
return rc;
}
}
for (i = 0; i < led->num_fnodes; i++) {
/*
* Do not turn ON flash/torch device if
* i. the device is not under this switch or
* ii. brightness is not configured for device under this switch
*/
if (!(snode->led_mask & BIT(led->fnode[i].id)) ||
!led->fnode[i].configured)
continue;
/*
* For flash, LMH mitigation needs to be enabled
* if total current used is greater than or
* equal to 1A.
*/
type = led->fnode[i].type;
if (type == FLASH_LED_TYPE_FLASH)
total_curr_ma += led->fnode[i].user_current_ma;
led_en |= (1 << led->fnode[i].id);
}
if (total_curr_ma >= FLASH_LMH_TRIGGER_LIMIT_MA) {
rc = qti_flash_lmh_mitigation_config(led, true);
if (rc < 0)
return rc;
/* Wait for lmh mitigation to take effect */
udelay(500);
} else if (led->trigger_lmh) {
rc = qti_flash_lmh_mitigation_config(led, false);
if (rc < 0)
return rc;
}
return qti_flash_led_strobe(led, snode, snode->led_mask, led_en);
}
static int qti_flash_switch_disable(struct flash_switch_data *snode)
{
struct qti_flash_led *led = snode->led;
int rc = 0, i;
u8 led_dis = 0;
for (i = 0; i < led->num_fnodes; i++) {
if (!(snode->led_mask & BIT(led->fnode[i].id)) ||
!led->fnode[i].configured)
continue;
led_dis |= BIT(led->fnode[i].id);
}
rc = qti_flash_led_strobe(led, NULL, led_dis, ~led_dis);
if (rc < 0) {
pr_err("Failed to destrobe LEDs under with switch, rc=%d\n",
rc);
return rc;
}
for (i = 0; i < led->num_fnodes; i++) {
/*
* Do not turn OFF flash/torch device if
* i. the device is not under this switch or
* ii. brightness is not configured for device under this switch
*/
if (!(snode->led_mask & BIT(led->fnode[i].id)) ||
!led->fnode[i].configured)
continue;
rc = qti_flash_led_disable(&led->fnode[i]);
if (rc < 0) {
pr_err("Failed to disable LED%d\n",
&led->fnode[i].id);
break;
}
}
snode->on_time_ms = 0;
snode->off_time_ms = 0;
return rc;
}
static int qti_flash_led_switch_brightness_set(
struct led_classdev *led_cdev, enum led_brightness value)
{
struct flash_switch_data *snode = NULL;
int rc = 0;
bool state = value > 0;
snode = container_of(led_cdev, struct flash_switch_data, cdev);
if (snode->enabled == state) {
pr_debug("Switch is already %s!\n",
state ? "enabled" : "disabled");
return rc;
}
if (state) {
if (snode->on_time_ms) {
pr_debug("On timer started with delay %d ms\n",
snode->on_time_ms);
hrtimer_start(&snode->on_timer,
ms_to_ktime(snode->on_time_ms),
HRTIMER_MODE_REL);
return rc;
}
rc = qti_flash_switch_enable(snode);
} else {
rc = qti_flash_switch_disable(snode);
}
if (rc < 0)
pr_err("Failed to %s switch, rc=%d\n",
state ? "enable" : "disable", rc);
else
snode->enabled = state;
return rc;
}
static struct led_classdev *trigger_to_lcdev(struct led_trigger *trig)
{
struct led_classdev *led_cdev;
read_lock(&trig->leddev_list_lock);
list_for_each_entry(led_cdev, &trig->led_cdevs, trig_list) {
if (!strcmp(led_cdev->default_trigger, trig->name)) {
read_unlock(&trig->leddev_list_lock);
return led_cdev;
}
}
read_unlock(&trig->leddev_list_lock);
return NULL;
}
static enum hrtimer_restart off_timer_function(struct hrtimer *timer)
{
struct flash_switch_data *snode = container_of(timer,
struct flash_switch_data, off_timer);
int rc = 0;
rc = qti_flash_switch_disable(snode);
if (rc < 0)
pr_err("Failed to disable flash LED switch %s, rc=%d\n",
snode->cdev.name, rc);
else
snode->enabled = false;
return HRTIMER_NORESTART;
}
static enum hrtimer_restart on_timer_function(struct hrtimer *timer)
{
struct flash_switch_data *snode = container_of(timer,
struct flash_switch_data, on_timer);
int rc = 0;
rc = qti_flash_switch_enable(snode);
if (rc < 0) {
snode->enabled = false;
pr_err("Failed to enable flash LED switch %s, rc=%d\n",
snode->cdev.name, rc);
} else {
snode->enabled = true;
}
return HRTIMER_NORESTART;
}
int qti_flash_led_set_param(struct led_trigger *trig,
struct flash_led_param param)
{
struct led_classdev *led_cdev = trigger_to_lcdev(trig);
struct flash_switch_data *snode;
if (!led_cdev) {
pr_err("Invalid led_cdev in trigger %s\n", trig->name);
return -EINVAL;
}
if (!param.on_time_ms && !param.off_time_ms) {
pr_err("Invalid param, on_time/off_time cannot be 0\n");
return -EINVAL;
}
snode = container_of(led_cdev, struct flash_switch_data, cdev);
snode->on_time_ms = param.on_time_ms;
snode->off_time_ms = param.off_time_ms;
return 0;
}
EXPORT_SYMBOL(qti_flash_led_set_param);
static int is_usb_psy_available(struct qti_flash_led *led)
{
if (!led->usb_psy) {
led->usb_psy = power_supply_get_by_name("usb");
if (!led->usb_psy) {
pr_err_ratelimited("Couldn't get usb_psy\n");
return -ENODEV;
}
}
return 0;
}
#define UCONV 1000000LL
#define MCONV 1000LL
#define VIN_FLASH_MIN_UV 3300000LL
#define BOB_EFFICIENCY 900LL
#define VFLASH_DIP_MARGIN_UV 50000
#define VOLTAGE_HDRM_DEFAULT_MV 400
#define VDIP_THRESH_DEFAULT_UV 2800000LL
#define CHGBST_EFFICIENCY 800LL
#define CHGBST_FLASH_VDIP_MARGIN 10000
#define VIN_FLASH_UV 5000000
#define VIN_FLASH_RANGE_1 4250000
#define VIN_FLASH_RANGE_2 4500000
#define VIN_FLASH_RANGE_3 4750000
#define OCV_RANGE_1 3800000
#define OCV_RANGE_2 4100000
#define OCV_RANGE_3 4350000
#define BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA 1000
static int qti_flash_led_calc_bharger_max_current(struct qti_flash_led *led,
int *max_current)
{
union power_supply_propval pval = {0, };
int ocv_uv, ibat_now, flash_led_max_total_curr_ma, rc;
int rbatt_uohm = 0, usb_present, otg_enable;
int64_t ibat_flash_ua, avail_flash_ua, avail_flash_power_fw;
int64_t ibat_safe_ua, vin_flash_uv = 0, vph_flash_uv, vph_flash_vdip;
if (led->data->pmic_type != PM2250)
return 0;
rc = is_usb_psy_available(led);
if (rc < 0)
return rc;
rc = power_supply_get_property(led->usb_psy, POWER_SUPPLY_PROP_SCOPE,
&pval);
if (rc < 0) {
pr_err("usb psy does not support usb present, rc=%d\n", rc);
return rc;
}
otg_enable = pval.intval;
/* RESISTANCE = esr_uohm + rslow_uohm */
rc = qti_flash_iio_getprop(led, RBATT, &rbatt_uohm);
if (rc < 0) {
pr_err("bms psy does not support resistance, rc=%d\n", rc);
return rc;
}
/* If no battery is connected, return max possible flash current */
if (!rbatt_uohm) {
*max_current = BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA;
return 0;
}
rc = qti_flash_iio_getprop(led, OCV, &ocv_uv);
if (rc < 0) {
pr_err("bms psy does not support OCV, rc=%d\n", rc);
return rc;
}
rc = qti_flash_iio_getprop(led, IBAT, &ibat_now);
if (rc < 0) {
pr_err("bms psy does not support current, rc=%d\n", rc);
return rc;
}
rc = power_supply_get_property(led->usb_psy, POWER_SUPPLY_PROP_PRESENT,
&pval);
if (rc < 0) {
pr_err("usb psy does not support usb present, rc=%d\n", rc);
return rc;
}
usb_present = pval.intval;
rbatt_uohm += FLASH_LED_RPARA_DEFAULT_UOHM;
vph_flash_vdip = VPH_DROOP_THRESH_VAL_UV + CHGBST_FLASH_VDIP_MARGIN;
/*
* Calculate the maximum current that can pulled out of the battery
* before the battery voltage dips below a safe threshold.
*/
ibat_safe_ua = div_s64((ocv_uv - vph_flash_vdip) * UCONV,
rbatt_uohm);
if (ibat_safe_ua <= led->ibatt_ocp_threshold_ua) {
/*
* If the calculated current is below the OCP threshold, then
* use it as the possible flash current.
*/
ibat_flash_ua = ibat_safe_ua - ibat_now;
vph_flash_uv = vph_flash_vdip;
} else {
/*
* If the calculated current is above the OCP threshold, then
* use the ocp threshold instead.
*
* Any higher current will be tripping the battery OCP.
*/
ibat_flash_ua = led->ibatt_ocp_threshold_ua - ibat_now;
vph_flash_uv = ocv_uv - div64_s64((int64_t)rbatt_uohm
* led->ibatt_ocp_threshold_ua, UCONV);
}
/* when USB is present or OTG is enabled, VIN_FLASH is always at 5V */
if (usb_present || (otg_enable == POWER_SUPPLY_SCOPE_SYSTEM))
vin_flash_uv = VIN_FLASH_UV;
else if (ocv_uv <= OCV_RANGE_1)
vin_flash_uv = VIN_FLASH_RANGE_1;
else if (ocv_uv > OCV_RANGE_1 && ocv_uv <= OCV_RANGE_2)
vin_flash_uv = VIN_FLASH_RANGE_2;
else if (ocv_uv > OCV_RANGE_2 && ocv_uv <= OCV_RANGE_3)
vin_flash_uv = VIN_FLASH_RANGE_3;
/* Calculate the available power for the flash module. */
avail_flash_power_fw = CHGBST_EFFICIENCY * vph_flash_uv * ibat_flash_ua;
/*
* Calculate the available amount of current the flash module can draw
* before collapsing the battery. (available power/ flash input voltage)
*/
avail_flash_ua = div64_s64(avail_flash_power_fw, vin_flash_uv * MCONV);
flash_led_max_total_curr_ma = BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA;
*max_current = min(flash_led_max_total_curr_ma,
(int)(div64_s64(avail_flash_ua, MCONV)));
pr_debug("avail_iflash=%lld, ocv=%d, ibat=%d, rbatt=%d,max_current=%lld, usb_present=%d, otg_enable = %d\n",
avail_flash_ua, ocv_uv, ibat_now, rbatt_uohm,
(*max_current * MCONV), usb_present, otg_enable);
return 0;
}
static int qti_flash_led_get_voltage_headroom(
struct qti_flash_led *led)
{
static const struct flash_current_headroom *hdrm_map;
int i, j, voltage_hdrm_mv = 0, voltage_hdrm_max = 0;
u32 map_size = 0;
if (led->subtype == FLASH_LED_4_CHAN) {
hdrm_map = pm8350c_map;
map_size = ARRAY_SIZE(pm8350c_map);
}
for (i = 0; i < led->num_fnodes; i++) {
if (!led->fnode[i].configured)
continue;
voltage_hdrm_mv = VOLTAGE_HDRM_DEFAULT_MV;
for (j = 0; j < map_size; j++) {
if (led->fnode[i].current_ma <= hdrm_map[j].current_ma)
voltage_hdrm_mv = hdrm_map[j].headroom_mv;
}
voltage_hdrm_max = max(voltage_hdrm_max, voltage_hdrm_mv);
}
if (!voltage_hdrm_max)
voltage_hdrm_max = VOLTAGE_HDRM_DEFAULT_MV;
return voltage_hdrm_max;
}
static int qti_flash_led_calc_max_avail_current(
struct qti_flash_led *led,
int *max_current_ma)
{
int rc;
int rbatt_uohm, ocv_uv, ibatt_now_ua, voltage_hdrm_mv;
int64_t ibatt_safe_ua, i_flash_ua, i_avail_ua, vflash_vdip,
vph_flash_uv, vin_flash_uv, p_flash_fw;
union power_supply_propval prop = {};
rc = qti_battery_charger_get_prop("battery", BATTERY_RESISTANCE,
&rbatt_uohm);
if (rc < 0) {
pr_err("Failed to get battery resistance, rc=%d\n",
rc);
return rc;
}
if (!rbatt_uohm) {
*max_current_ma = MAX_FLASH_CURRENT_MA;
led->debug_board_present = true;
return 0;
}
if (!led->batt_psy)
led->batt_psy = power_supply_get_by_name("battery");
if (!led->batt_psy) {
pr_err("Failed to get battery power supply, rc=%d\n", rc);
return -EINVAL;
}
rc = power_supply_get_property(led->batt_psy,
POWER_SUPPLY_PROP_VOLTAGE_OCV, &prop);
if (rc < 0) {
pr_err("Failed to get battery OCV, rc=%d\n", rc);
return rc;
}
ocv_uv = prop.intval;
rc = power_supply_get_property(led->batt_psy,
POWER_SUPPLY_PROP_CURRENT_NOW, &prop);
if (rc < 0) {
pr_err("Failed to get battery current, rc=%d\n", rc);
return rc;
}
/* Battery power supply returns -ve value for discharging */
ibatt_now_ua = -(prop.intval);
voltage_hdrm_mv = qti_flash_led_get_voltage_headroom(led);
vflash_vdip = VDIP_THRESH_DEFAULT_UV;
ibatt_safe_ua = DIV_ROUND_CLOSEST((ocv_uv -
(vflash_vdip + VFLASH_DIP_MARGIN_UV)) * UCONV,
rbatt_uohm);
if (ibatt_safe_ua < IBATT_OCP_THRESH_DEFAULT_UA) {
i_flash_ua = ibatt_safe_ua - ibatt_now_ua;
vph_flash_uv = vflash_vdip + VFLASH_DIP_MARGIN_UV;
} else {
i_flash_ua = IBATT_OCP_THRESH_DEFAULT_UA - ibatt_now_ua;
vph_flash_uv = ocv_uv - DIV_ROUND_CLOSEST((int64_t)rbatt_uohm
* IBATT_OCP_THRESH_DEFAULT_UA, UCONV);
}
vin_flash_uv = max(VLED_MAX_DEFAULT_UV +
(voltage_hdrm_mv * MCONV), VIN_FLASH_MIN_UV);
p_flash_fw = BOB_EFFICIENCY * vph_flash_uv * i_flash_ua;
i_avail_ua = DIV_ROUND_CLOSEST(p_flash_fw, (vin_flash_uv * MCONV));
*max_current_ma = min(MAX_FLASH_CURRENT_MA,
(int)(DIV_ROUND_CLOSEST(i_avail_ua, MCONV)));
pr_debug("rbatt_uohm=%d ocv_uv=%d ibatt_now_ua=%d i_avail_ua=%lld\n",
rbatt_uohm, ocv_uv, ibatt_now_ua, i_avail_ua);
return 0;
}
static int qti_flash_led_calc_thermal_current(
struct qti_flash_led *led,
int *thermal_current_limit)
{
int rc;
u8 otst_status, thrsh_min = 0;
if (led->subtype == FLASH_LED_4_CHAN) {
thrsh_min = FLASH_LED_V1_OTST1_THRSH_MIN;
if (led->revision == FLASH_LED_REVISION_2P0)
thrsh_min = FLASH_LED_V2_OTST1_THRSH_MIN;
}
rc = qti_flash_led_masked_write(led,
FLASH_LED_THERMAL_OTST1_CFG1,
FLASH_LED_THERMAL_THRSH_MASK,
thrsh_min);
if (rc < 0)
return rc;
rc = qti_flash_led_masked_write(led,
FLASH_LED_THERMAL_OTST2_CFG1,
FLASH_LED_THERMAL_THRSH_MASK,
FLASH_LED_OTST2_THRSH_MIN);
if (rc < 0)
return rc;
/* Check THERMAL OTST status */
rc = qti_flash_led_read(led, FLASH_LED_STATUS2, &otst_status, 1);
if (rc < 0)
return rc;
if (otst_status & FLASH_LED_OTST1_STATUS)
*thermal_current_limit = led->thermal_derate_current[OTST1_IDX];
else if (otst_status & FLASH_LED_OTST2_STATUS)
*thermal_current_limit = led->thermal_derate_current[OTST2_IDX];
pr_debug("thermal_current_limit=%d\n", *thermal_current_limit);
return 0;
}
static int qti_flash_led_get_max_avail_current(
struct qti_flash_led *led, int *max_current_ma)
{
int thermal_current_limit = 0, rc;
if (led->secure_vm) {
led->max_current = MAX_FLASH_CURRENT_MA;
return 0;
}
rc = qti_flash_led_calc_max_avail_current(led, max_current_ma);
if (rc < 0) {
pr_err("Failed to calculate max avail current, rc=%d\n", rc);
return rc;
}
rc = qti_flash_led_calc_thermal_current(led,
&thermal_current_limit);
if (rc < 0) {
pr_err("Failed to calculate thermal current limit, rc=%d\n",
rc);
return rc;
}
if (thermal_current_limit)
*max_current_ma = min(*max_current_ma, thermal_current_limit);
led->max_current = *max_current_ma;
pr_debug("max_current_ma=%d\n", *max_current_ma);
return 0;
}
static int qti_flash_led_regulator_control(struct led_classdev *led_cdev,
int options)
{
struct flash_switch_data *snode;
int rc = 0, ret;
struct led_classdev_flash *fdev = NULL;
struct qti_flash_led *led;
struct flash_node_data *fnode;
fdev = container_of(led_cdev, struct led_classdev_flash, led_cdev);
fnode = container_of(fdev, struct flash_node_data, fdev);
led = fnode->led;
snode = container_of(led_cdev, struct flash_switch_data, cdev);
if (snode->led->data->pmic_type != PM2250)
return 0;
if (options & ENABLE_REGULATOR) {
ret = 1;
rc = qti_flash_iio_setprop(led, F_ACTIVE, ret);
if (rc < 0) {
pr_err("Failed to set FLASH_ACTIVE on charger rc=%d\n",
rc);
return rc;
}
pr_debug("FLASH_ACTIVE = 1\n");
} else if (options & DISABLE_REGULATOR) {
ret = 0;
rc = qti_flash_iio_setprop(led, F_ACTIVE, ret);
if (rc < 0) {
pr_err("Failed to set FLASH_ACTIVE on charger rc=%d\n",
rc);
return rc;
}
pr_debug("FLASH_ACTIVE = 0\n");
}
return 0;
}
int qti_flash_led_prepare(struct led_trigger *trig, int options,
int *max_current)
{
struct led_classdev *led_cdev;
struct flash_switch_data *snode;
int rc = 0;
if (!trig) {
pr_err("Invalid led_trigger\n");
return -EINVAL;
}
led_cdev = trigger_to_lcdev(trig);
if (!led_cdev) {
pr_err("Invalid led_cdev in trigger %s\n", trig->name);
return -ENODEV;
}
snode = container_of(led_cdev, struct flash_switch_data, cdev);
if (options & QUERY_MAX_AVAIL_CURRENT) {
if (!max_current) {
pr_err("Invalid max_current pointer\n");
return -EINVAL;
}
if (snode->led->data->pmic_type == PM2250) {
rc = qti_flash_led_calc_bharger_max_current(snode->led,
max_current);
if (rc < 0) {
pr_err("Failed to query max avail current, rc=%d\n",
rc);
*max_current = snode->led->max_current;
return rc;
}
} else {
rc = qti_flash_led_get_max_avail_current(snode->led,
max_current);
if (rc < 0) {
pr_err("Failed to query max avail current, rc=%d\n",
rc);
return rc;
}
}
}
rc = qti_flash_led_regulator_control(led_cdev, options);
if (rc < 0)
pr_err("Failed to set flash control options\n");
return rc;
}
EXPORT_SYMBOL(qti_flash_led_prepare);
static ssize_t qti_flash_led_prepare_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int rc, options;
u32 val;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
rc = kstrtouint(buf, 0, &val);
if (rc < 0)
return rc;
if (val != 0 && val != 1)
return count;
options = val ? ENABLE_REGULATOR : DISABLE_REGULATOR;
rc = qti_flash_led_regulator_control(led_cdev, options);
if (rc < 0) {
pr_err("failed to query led regulator\n");
return rc;
}
return count;
}
static ssize_t qti_flash_led_max_current_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct flash_switch_data *snode;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
int rc;
snode = container_of(led_cdev, struct flash_switch_data, cdev);
if (snode->led->data->pmic_type == PM2250) {
rc = qti_flash_led_calc_bharger_max_current(snode->led,
&snode->led->max_current);
} else {
rc = qti_flash_led_get_max_avail_current(snode->led,
&snode->led->max_current);
}
if (rc < 0) {
pr_err("Failed to get max current, rc=%d\n", rc);
return -EINVAL;
}
return scnprintf(buf, PAGE_SIZE, "%d\n", snode->led->max_current);
}
static ssize_t qti_flash_on_time_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int rc;
struct flash_switch_data *snode;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
u64 val;
rc = kstrtou64(buf, 0, &val);
if (rc < 0)
return rc;
if (!val)
return -EINVAL;
snode = container_of(led_cdev, struct flash_switch_data, cdev);
snode->on_time_ms = val;
return count;
}
static ssize_t qti_flash_on_time_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct flash_switch_data *snode;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
snode = container_of(led_cdev, struct flash_switch_data, cdev);
return scnprintf(buf, PAGE_SIZE, "%lu\n", snode->on_time_ms * 1000);
}
static ssize_t qti_flash_off_time_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int rc;
struct flash_switch_data *snode;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
u64 val;
rc = kstrtou64(buf, 0, &val);
if (rc < 0)
return rc;
val = min_t(u64, val, SAFETY_TIMER_MAX_TIMEOUT_MS);
snode = container_of(led_cdev, struct flash_switch_data, cdev);
snode->off_time_ms = val;
return count;
}
static ssize_t qti_flash_off_time_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct flash_switch_data *snode;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
snode = container_of(led_cdev, struct flash_switch_data, cdev);
return scnprintf(buf, PAGE_SIZE, "%lu\n", snode->off_time_ms * 1000);
}
static struct device_attribute qti_flash_led_attrs[] = {
__ATTR(max_current, 0400, qti_flash_led_max_current_show, NULL),
__ATTR(on_time, 0600, qti_flash_on_time_show,
qti_flash_on_time_store),
__ATTR(off_time, 0600, qti_flash_off_time_show,
qti_flash_off_time_store),
__ATTR(enable, 0664, NULL, qti_flash_led_prepare_store),
};
static int qti_flash_brightness_set_blocking(
struct led_classdev *led_cdev, enum led_brightness value)
{
qti_flash_led_brightness_set(led_cdev, value);
return 0;
}
static int qti_flash_brightness_set(
struct led_classdev_flash *fdev, u32 brightness)
{
qti_flash_led_brightness_set(&fdev->led_cdev, brightness);
return 0;
}
static int qti_flash_brightness_get(
struct led_classdev_flash *fdev, u32 *brightness)
{
*brightness = qti_flash_led_brightness_get(&fdev->led_cdev);
return 0;
}
static int qti_flash_strobe_set(struct led_classdev_flash *fdev,
bool state)
{
struct flash_node_data *fnode;
int rc;
u8 mask, value;
fnode = container_of(fdev, struct flash_node_data, fdev);
if (fnode->enabled == state)
return 0;
if (state && !fnode->configured)
return -EINVAL;
if (!fnode->duration) {
pr_debug("Safety time duration is zero, strobe not set\n");
return -EINVAL;
}
mask = FLASH_LED_ENABLE(fnode->id);
value = state ? FLASH_LED_ENABLE(fnode->id) : 0;
rc = qti_flash_led_strobe(fnode->led, NULL, mask, value);
if (rc < 0) {
pr_err("Failed to %s LED, rc=%d\n",
state ? "strobe" : "desrobe", rc);
return rc;
}
fnode->enabled = state;
if (!state) {
rc = qti_flash_led_disable(fnode);
if (rc < 0)
pr_err("Failed to disable LED %u\n", fnode->id);
}
return rc;
}
static int qti_flash_strobe_get(struct led_classdev_flash *fdev,
bool *state)
{
struct flash_node_data *fnode = container_of(fdev,
struct flash_node_data, fdev);
*state = fnode->enabled;
return 0;
}
static int qti_flash_timeout_set(struct led_classdev_flash *fdev,
u32 timeout)
{
struct qti_flash_led *led;
struct flash_node_data *fnode;
int rc = 0;
u8 val;
fnode = container_of(fdev, struct flash_node_data, fdev);
led = fnode->led;
if (!timeout) {
fnode->duration = 0;
return 0;
}
timeout = timeout / 1000;
rc = timeout_to_code(timeout);
if (rc < 0)
return rc;
fnode->duration = rc;
val = fnode->duration | FLASH_LED_SAFETY_TIMER_EN;
rc = qti_flash_led_write(led,
FLASH_LED_SAFETY_TIMER(fnode->id), &val, 1);
return rc;
}
static const struct led_flash_ops flash_ops = {
.flash_brightness_set = qti_flash_brightness_set,
.flash_brightness_get = qti_flash_brightness_get,
.strobe_set = qti_flash_strobe_set,
.strobe_get = qti_flash_strobe_get,
.timeout_set = qti_flash_timeout_set,
};
static int qti_flash_led_setup(struct qti_flash_led *led)
{
int rc = 0, i, addr_offset;
u8 val, mask;
rc = qti_flash_led_read(led, FLASH_LED_REVISION1, &val, 1);
if (rc < 0)
return rc;
led->revision = val;
rc = qti_flash_led_read(led, FLASH_LED_PERIPH_SUBTYPE, &val, 1);
if (rc < 0)
return rc;
led->subtype = val;
for (i = 0; i < led->num_fnodes; i++) {
addr_offset = led->fnode[i].id;
rc = qti_flash_led_masked_write(led,
FLASH_LED_SAFETY_TIMER(addr_offset),
FLASH_LED_SAFETY_TIMER_EN_MASK, 0);
if (rc < 0)
return rc;
val = (led->fnode[i].strobe_config <<
FLASH_LED_STROBE_CFG_SHIFT) |
(led->fnode[i].strobe_sel <<
FLASH_LED_STROBE_SEL_SHIFT);
mask = FLASH_LED_STROBE_CFG_MASK | FLASH_LED_HW_SW_STROBE_SEL;
rc = qti_flash_led_masked_write(led,
FLASH_LED_STROBE_CTRL(addr_offset), mask, val);
if (rc < 0)
return rc;
}
led->max_current = MAX_FLASH_CURRENT_MA;
led->thermal_derate_current[OTST1_IDX] = OTST1_CURR_LIM_MA;
led->thermal_derate_current[OTST2_IDX] = OTST2_CURR_LIM_MA;
return rc;
}
static irqreturn_t qti_flash_led_irq_handler(int irq, void *_led)
{
struct qti_flash_led *led = _led;
int rc;
u8 irq_status, led_status1, led_status2;
rc = qti_flash_led_read(led, FLASH_INT_RT_STS, &irq_status, 1);
if (rc < 0)
goto exit;
if (irq == led->led_fault_irq) {
if (irq_status & FLASH_LED_FAULT_RT_STS)
pr_debug("Led fault open/short/vreg_not_ready detected\n");
} else if (irq == led->all_ramp_down_done_irq) {
if (irq_status & FLASH_LED_ALL_RAMP_DN_DONE_RT_STS)
pr_debug("All LED channels ramp down done detected\n");
} else if (irq == led->all_ramp_up_done_irq) {
if (irq_status & FLASH_LED_ALL_RAMP_UP_DONE_RT_STS)
pr_debug("All LED channels ramp up done detected\n");
}
rc = qti_flash_led_read(led, FLASH_LED_STATUS1, &led_status1, 1);
if (rc < 0)
goto exit;
if (led_status1)
pr_debug("LED channel open/short fault detected\n");
rc = qti_flash_led_read(led, FLASH_LED_STATUS2, &led_status2, 1);
if (rc < 0)
goto exit;
if (led_status2 & FLASH_LED_VPH_PWR_LOW)
pr_debug("LED vph_droop fault detected!\n");
pr_debug("LED irq handled, irq_status=%02x led_status1=%02x led_status2=%02x\n",
irq_status, led_status1, led_status2);
exit:
return IRQ_HANDLED;
}
static int qti_flash_led_register_interrupts(struct qti_flash_led *led)
{
int rc;
if (led->all_ramp_up_done_irq >= 0) {
rc = devm_request_threaded_irq(&led->pdev->dev,
led->all_ramp_up_done_irq, NULL, qti_flash_led_irq_handler,
IRQF_ONESHOT, "flash_all_ramp_up", led);
if (rc < 0) {
pr_err("Failed to request all_ramp_up_done(%d) IRQ(err:%d)\n",
led->all_ramp_up_done_irq, rc);
return rc;
}
}
if (led->all_ramp_down_done_irq >= 0) {
rc = devm_request_threaded_irq(&led->pdev->dev,
led->all_ramp_down_done_irq, NULL, qti_flash_led_irq_handler,
IRQF_ONESHOT, "flash_all_ramp_down", led);
if (rc < 0) {
pr_err("Failed to request all_ramp_down_done(%d) IRQ(err:%d)\n",
led->all_ramp_down_done_irq,
rc);
return rc;
}
}
if (led->led_fault_irq >= 0) {
rc = devm_request_threaded_irq(&led->pdev->dev,
led->led_fault_irq, NULL, qti_flash_led_irq_handler,
IRQF_ONESHOT, "flash_fault", led);
if (rc < 0) {
pr_err("Failed to request led_fault(%d) IRQ(err:%d)\n",
led->led_fault_irq, rc);
return rc;
}
}
return 0;
}
static int register_switch_device(struct qti_flash_led *led,
struct flash_switch_data *snode, struct device_node *node)
{
int rc, i;
rc = of_property_read_string(node, "qcom,led-name",
&snode->cdev.name);
if (rc < 0) {
pr_err("Failed to read switch node name, rc=%d\n", rc);
return rc;
}
rc = of_property_read_string(node, "qcom,default-led-trigger",
&snode->cdev.default_trigger);
if (rc < 0) {
pr_err("Failed to read trigger name, rc=%d\n", rc);
return rc;
}
rc = of_property_read_u32(node, "qcom,led-mask", &snode->led_mask);
if (rc < 0) {
pr_err("Failed to read led mask rc=%d\n", rc);
return rc;
}
if (!snode->led_mask || snode->led_mask > LED_MASK_ALL(led)) {
pr_err("led-mask %#x invalid\n", snode->led_mask);
return -EINVAL;
} else if (snode->led_mask < LED_MASK_ALL(led)) {
led->non_all_mask_switch_present = true;
}
snode->symmetry_en = of_property_read_bool(node, "qcom,symmetry-en");
snode->on_time_ms = 0;
snode->off_time_ms = 0;
hrtimer_init(&snode->on_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
hrtimer_init(&snode->off_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
snode->on_timer.function = on_timer_function;
snode->off_timer.function = off_timer_function;
snode->led = led;
snode->cdev.brightness_set_blocking = qti_flash_led_switch_brightness_set;
snode->cdev.brightness_get = qti_flash_led_brightness_get;
rc = devm_led_classdev_register(&led->pdev->dev, &snode->cdev);
if (rc < 0) {
pr_err("Failed to register led switch device:%s\n",
snode->cdev.name);
return rc;
}
for (i = 0; i < ARRAY_SIZE(qti_flash_led_attrs); i++) {
rc = sysfs_create_file(&snode->cdev.dev->kobj,
&qti_flash_led_attrs[i].attr);
if (rc < 0) {
pr_err("Failed to create sysfs attrs, rc=%d\n", rc);
goto sysfs_fail;
}
}
return 0;
sysfs_fail:
while (i >= 0)
sysfs_remove_file(&snode->cdev.dev->kobj,
&qti_flash_led_attrs[i--].attr);
return rc;
}
static int register_flash_device(struct qti_flash_led *led,
struct flash_node_data *fnode, struct device_node *node)
{
struct led_flash_setting *setting;
const char *temp_string;
int rc;
u32 val, default_curr_ma, duration;
rc = of_property_read_string(node, "qcom,led-name",
&fnode->fdev.led_cdev.name);
if (rc < 0) {
pr_err("Failed to read flash LED names\n");
return rc;
}
rc = of_property_read_string(node, "label", &temp_string);
if (rc < 0) {
pr_err("Failed to read flash LED label\n");
return rc;
}
if (!strcmp(temp_string, "flash")) {
fnode->type = FLASH_LED_TYPE_FLASH;
} else if (!strcmp(temp_string, "torch")) {
fnode->type = FLASH_LED_TYPE_TORCH;
} else if (!strcmp(temp_string, "indicator")) {
fnode->type = FLASH_LED_TYPE_INDICATOR;
} else {
pr_err("Incorrect flash LED type %s\n", temp_string);
return rc;
}
rc = of_property_read_u32(node, "qcom,id", &val);
if (rc < 0) {
pr_err("Failed to read flash LED ID\n");
return rc;
}
fnode->id = (u8)val;
rc = of_property_read_string(node, "qcom,default-led-trigger",
&fnode->fdev.led_cdev.default_trigger);
if ((rc < 0) && (fnode->type != FLASH_LED_TYPE_INDICATOR)) {
pr_err("Failed to read trigger name\n");
return rc;
}
rc = of_property_read_u32(node, "qcom,ires-ua", &val);
if (rc < 0) {
pr_err("Failed to read current resolution, rc=%d\n", rc);
return rc;
} else if (!rc) {
rc = get_ires_idx(val);
if (rc < 0) {
pr_err("Incorrect ires-ua configured, ires-ua=%u\n",
val);
return rc;
}
fnode->default_ires_ua = fnode->ires_ua = val;
fnode->updated_ires_idx = fnode->ires_idx = rc;
}
rc = of_property_read_u32(node, "qcom,max-current-ma", &val);
if (rc < 0) {
pr_err("Failed to read max current, rc=%d\n", rc);
return rc;
}
if (fnode->type == FLASH_LED_TYPE_FLASH &&
(val > IRES_12P5_MAX_CURR_MA)) {
pr_err("Incorrect max-current-ma for flash %u\n",
val);
return -EINVAL;
}
if (fnode->type == FLASH_LED_TYPE_TORCH &&
(val > TORCH_MAX_CURR_MA)) {
pr_err("Incorrect max-current-ma for torch %u\n",
val);
return -EINVAL;
}
if (fnode->type == FLASH_LED_TYPE_INDICATOR &&
(val > INDICATOR_MAX_CURR_MA)) {
pr_err("Incorrect max-current-ma for indicator %u\n", val);
return -EINVAL;
}
fnode->max_current = val;
fnode->fdev.led_cdev.max_brightness = val;
duration = SAFETY_TIMER_DEFAULT_TIMEOUT_MS;
rc = of_property_read_u32(node, "qcom,duration-ms", &val);
if (!rc && (val >= SAFETY_TIMER_MIN_TIMEOUT_MS &&
val <= SAFETY_TIMER_MAX_TIMEOUT_MS))
duration = val;
rc = timeout_to_code(duration);
if (rc < 0) {
pr_err("Incorrect timeout configured %u\n", duration);
return rc;
}
fnode->duration = rc;
fnode->strobe_sel = SW_STROBE;
rc = of_property_read_u32(node, "qcom,strobe-sel", &val);
if (!rc)
fnode->strobe_sel = (u8)val;
if (fnode->type == FLASH_LED_TYPE_INDICATOR)
fnode->strobe_sel = SW_STROBE;
if (fnode->strobe_sel == HW_STROBE) {
rc = of_property_read_u32(node, "qcom,strobe-config", &val);
if (!rc) {
fnode->strobe_config = (u8)val;
} else {
pr_err("Failed to read qcom,strobe-config property\n");
return rc;
}
}
fnode->led = led;
fnode->fdev.led_cdev.brightness_set = qti_flash_led_brightness_set;
fnode->fdev.led_cdev.brightness_get = qti_flash_led_brightness_get;
fnode->enabled = false;
fnode->configured = false;
if (fnode->type != FLASH_LED_TYPE_INDICATOR)
fnode->fdev.ops = &flash_ops;
if (fnode->type == FLASH_LED_TYPE_FLASH) {
fnode->fdev.led_cdev.flags = LED_DEV_CAP_FLASH;
fnode->fdev.led_cdev.brightness_set_blocking =
qti_flash_brightness_set_blocking;
}
default_curr_ma = DIV_ROUND_CLOSEST(fnode->ires_ua, 1000);
setting = &fnode->fdev.brightness;
setting->min = 0;
setting->max = fnode->max_current;
setting->step = 1;
setting->val = default_curr_ma;
setting = &fnode->fdev.timeout;
setting->min = 0;
setting->max = SAFETY_TIMER_MAX_TIMEOUT_MS * 1000;
setting->step = SAFETY_TIMER_STEP_SIZE * 1000;
setting->val = SAFETY_TIMER_DEFAULT_TIMEOUT_MS * 1000;
rc = led_classdev_flash_register(&led->pdev->dev, &fnode->fdev);
if (rc < 0) {
pr_err("Failed to register flash led device:%s\n",
fnode->fdev.led_cdev.name);
return rc;
}
return 0;
}
static int qti_flash_led_register_device(struct qti_flash_led *led,
struct device_node *node)
{
struct device_node *temp;
char buffer[20];
const char *label;
int rc, i = 0, j = 0;
u32 val;
bool need_snode = false;
rc = of_property_read_u32(node, "reg", &val);
if (rc < 0) {
pr_err("Failed to find reg in node %s, rc = %d\n",
node->full_name, rc);
return rc;
}
led->base = val;
led->hw_strobe_gpio = devm_kcalloc(&led->pdev->dev,
led->data->max_channels, sizeof(u32), GFP_KERNEL);
if (!led->hw_strobe_gpio)
return -ENOMEM;
for (i = 0; i < led->data->max_channels; i++) {
led->hw_strobe_gpio[i] = -EINVAL;
rc = of_get_named_gpio(node, "hw-strobe-gpios", i);
if (rc < 0) {
pr_debug("Failed to get hw strobe gpio, rc = %d\n", rc);
continue;
}
if (!gpio_is_valid(rc)) {
pr_err("Error, Invalid gpio specified\n");
return -EINVAL;
}
led->hw_strobe_gpio[i] = rc;
scnprintf(buffer, sizeof(buffer), "hw_strobe_gpio%d", i);
rc = devm_gpio_request_one(&led->pdev->dev,
led->hw_strobe_gpio[i], GPIOF_DIR_OUT,
buffer);
if (rc < 0) {
pr_err("Failed to acquire gpio rc = %d\n", rc);
return rc;
}
gpio_direction_output(led->hw_strobe_gpio[i], 0);
}
led->secure_vm = of_property_read_bool(node, "qcom,secure-vm");
led->all_ramp_up_done_irq = of_irq_get_byname(node,
"all-ramp-up-done-irq");
if (led->all_ramp_up_done_irq < 0)
pr_debug("all-ramp-up-done-irq not used\n");
led->all_ramp_down_done_irq = of_irq_get_byname(node,
"all-ramp-down-done-irq");
if (led->all_ramp_down_done_irq < 0)
pr_debug("all-ramp-down-done-irq not used\n");
led->led_fault_irq = of_irq_get_byname(node,
"led-fault-irq");
if (led->led_fault_irq < 0)
pr_debug("led-fault-irq not used\n");
for_each_available_child_of_node(node, temp) {
rc = of_property_read_string(temp, "label", &label);
if (rc < 0) {
pr_err("Failed to parse label, rc=%d\n", rc);
of_node_put(temp);
return rc;
}
if (!strcmp("flash", label) || !strcmp("torch", label)) {
need_snode = true;
led->num_fnodes++;
} else if (!strcmp("indicator", label)) {
led->num_fnodes++;
} else if (!strcmp("switch", label)) {
led->num_snodes++;
} else {
pr_err("Invalid label for led node label=%s\n",
label);
of_node_put(temp);
return -EINVAL;
}
}
if (!led->num_fnodes) {
pr_err("No flash/torch devices defined\n");
return -ECHILD;
}
if (need_snode && !led->num_snodes) {
pr_err("No switch devices defined\n");
return -ENODEV;
}
led->fnode = devm_kcalloc(&led->pdev->dev, led->num_fnodes,
sizeof(*led->fnode), GFP_KERNEL);
if (!led->fnode)
return -ENOMEM;
if (led->num_snodes) {
led->snode = devm_kcalloc(&led->pdev->dev, led->num_snodes,
sizeof(*led->snode), GFP_KERNEL);
if (!led->snode)
return -ENOMEM;
}
i = 0;
for_each_available_child_of_node(node, temp) {
rc = of_property_read_string(temp, "label", &label);
if (rc < 0) {
pr_err("Failed to parse label, rc=%d\n", rc);
of_node_put(temp);
return rc;
}
if (!strcmp("flash", label) || !strcmp("torch", label) ||
!strcmp("indicator", label)) {
rc = register_flash_device(led, &led->fnode[i], temp);
if (rc < 0) {
pr_err("Failed to register flash device %s rc=%d\n",
led->fnode[i].fdev.led_cdev.name, rc);
of_node_put(temp);
goto unreg_led;
}
led->fnode[i++].fdev.led_cdev.dev->of_node = temp;
} else if (!strcmp("switch", label)) {
rc = register_switch_device(led, &led->snode[j], temp);
if (rc < 0) {
pr_err("Failed to register switch device %s rc=%d\n",
led->snode[j].cdev.name, rc);
i--;
of_node_put(temp);
goto unreg_led;
}
led->snode[j++].cdev.dev->of_node = temp;
}
}
led->ibatt_ocp_threshold_ua = FLASH_LED_IBATT_OCP_THRESH_DEFAULT_UA;
rc = of_property_read_u32(node, "qcom,ibatt-ocp-threshold-ua", &val);
if (!rc) {
led->ibatt_ocp_threshold_ua = val;
} else if (rc != -EINVAL) {
pr_err("Unable to parse ibatt_ocp threshold, rc=%d\n", rc);
return rc;
}
return 0;
unreg_led:
while (i >= 0)
led_classdev_flash_unregister(&led->fnode[i--].fdev);
return rc;
}
static void qti_flash_led_free_interrupts(struct qti_flash_led *led)
{
/* free irqs */
if (led->all_ramp_up_done_irq >= 0)
devm_free_irq(&led->pdev->dev,
led->all_ramp_up_done_irq,
led);
if (led->all_ramp_down_done_irq >= 0)
devm_free_irq(&led->pdev->dev,
led->all_ramp_down_done_irq,
led);
if (led->led_fault_irq >= 0)
devm_free_irq(&led->pdev->dev,
led->led_fault_irq,
led);
}
static int qti_flash_led_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct qti_flash_led *led;
int rc;
led = devm_kzalloc(&pdev->dev, sizeof(*led), GFP_KERNEL);
if (!led)
return -ENOMEM;
led->regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!led->regmap) {
pr_err("Failed to get parent's regmap\n");
return -EINVAL;
}
led->data = (struct pmic_data *)of_device_get_match_data(&pdev->dev);
if (!led->data) {
pr_err("Failed to get match_data\n");
return -EINVAL;
}
led->pdev = pdev;
led->iio_channels = devm_kcalloc(&pdev->dev,
ARRAY_SIZE(qti_flash_iio_prop_names),
sizeof(struct iio_channel *), GFP_KERNEL);
if (!led->iio_channels)
return -ENOMEM;
spin_lock_init(&led->lock);
rc = qti_flash_led_register_device(led, node);
if (rc < 0) {
pr_err("Failed to parse and register LED devices rc=%d\n", rc);
return rc;
}
rc = qti_flash_led_setup(led);
if (rc < 0) {
pr_err("Failed to initialize flash LED, rc=%d\n", rc);
return rc;
}
rc = qti_flash_led_register_interrupts(led);
if (rc < 0) {
pr_err("Failed to register LED interrupts rc=%d\n", rc);
return rc;
}
dev_set_drvdata(&pdev->dev, led);
return 0;
}
static int qti_flash_led_remove(struct platform_device *pdev)
{
struct qti_flash_led *led = dev_get_drvdata(&pdev->dev);
int i, j;
if (led->batt_psy)
power_supply_put(led->batt_psy);
for (i = 0; (i < led->num_snodes); i++) {
for (j = 0; j < ARRAY_SIZE(qti_flash_led_attrs); j++)
sysfs_remove_file(&led->snode[i].cdev.dev->kobj,
&qti_flash_led_attrs[j].attr);
}
for (i = 0; (i < led->num_fnodes); i++)
led_classdev_flash_unregister(&led->fnode[i].fdev);
return 0;
}
static int qti_flash_led_freeze(struct device *dev)
{
struct qti_flash_led *led = dev_get_drvdata(dev);
qti_flash_led_free_interrupts(led);
return 0;
}
static int qti_flash_led_restore(struct device *dev)
{
struct qti_flash_led *led = dev_get_drvdata(dev);
int rc = 0;
rc = qti_flash_led_setup(led);
if (rc < 0) {
pr_err("Failed to re-initialize flash LED in Restore, rc=%d\n", rc);
return rc;
}
rc = qti_flash_led_register_interrupts(led);
if (rc < 0)
pr_err("Interrupt re-registration failed in Restore rc= %d\n", rc);
return rc;
}
static const struct dev_pm_ops qti_flash_led_pm_ops = {
.freeze = qti_flash_led_freeze,
.restore = qti_flash_led_restore,
};
static const struct pmic_data data[] = {
[PM2250] = {
.max_channels = 1,
.pmic_type = PM2250,
},
[PM8350C] = {
.max_channels = 4,
.pmic_type = PM8350C,
},
};
static const struct of_device_id qti_flash_led_match_table[] = {
{
.compatible = "qcom,pm2250-flash-led",
.data = &data[PM2250],
},
{
.compatible = "qcom,pm8350c-flash-led",
.data = &data[PM8350C],
},
{ },
};
static struct platform_driver qti_flash_led_driver = {
.driver = {
.name = "leds-qti-flash",
.of_match_table = qti_flash_led_match_table,
.pm = &qti_flash_led_pm_ops,
},
.probe = qti_flash_led_probe,
.remove = qti_flash_led_remove,
};
module_platform_driver(qti_flash_led_driver);
MODULE_DESCRIPTION("QTI Flash LED driver");
MODULE_LICENSE("GPL v2");